Numerical Methods Based On Local Coordinates

Patrick Meury meury@math.ethz.ch

SAM Seminar für angewandte Mathematik

5 December 2005

3 1 4 3

Outline

Manifolds and Tangent Space Differential Equations on Manifolds Numerical Integrators on Manifolds

Outline

- 2 Differential Equations on Manifolds
- 3 Numerical Integrators on Manifolds

4 B 6 4 B

Definitions of Manifolds

Definition (Local constraints)

Let U be a neighbourhood of $a \in \mathbb{R}^n$, $g : U \mapsto \mathbb{R}^m$ a differentiable map with g(a) = 0 and assume that g'(a) has full rank m. Then a manifold \mathcal{M} is locally given by

$$\mathcal{M}:=\{y\in U\,;\,g(y)=0\}\;.$$

Definition (Local parameters)

Let $V \subset \mathbb{R}^{n-m}$ be a neighbourhood of 0, $\Psi : V \mapsto \mathbb{R}^n$ a differentiable map with $\Psi(0) = a$ and assume that $\Psi'(0)$ has full rank n - m. Then a manifold \mathcal{M} is locally given by

$$\mathcal{M} := \{ y = \Psi(z) ; z \in V \}$$
.

イロト イポト イヨト イヨト

Definition of Tangent Space

A tangent to a curve (or the tangent plane to a surface) is an affine space passing through the contact point $a \in M$.

Definition (Tangent space)

For a manifold \mathcal{M} we define the *tangent space* at $a \in \mathcal{M}$ by

$$T_{a}\mathcal{M} := \left\{ v \in \mathbb{R}^{n}; \begin{array}{l} \exists \text{ differentiable path } \gamma : (-\varepsilon, \varepsilon) \mapsto \mathbb{R}^{n} \\ \text{ with } \gamma(t) \in \mathcal{M} \ \forall \ t, \ \gamma(0) = a, \ \dot{\gamma}(0) = v \end{array} \right\} .$$

.

Characterization of Tangent Space

Lemma

If the manifold \mathcal{M} is locally given by a constraint $g : U \mapsto \mathbb{R}^m$, wich is differentiable with g(a) = 0 and rank g'(a) = m, then we have

$$T_a\mathcal{M} = \operatorname{Ker} g'(a)$$
.

If the manifold \mathcal{M} is locally given by a parametrization $\Psi: V \mapsto \mathbb{R}^n$, which is differentiable with $\Psi(0) = a$ and rank $\Psi'(0) = n - m$, then we have

$$T_{a}\mathcal{M}=\operatorname{Im}\Psi'(0)\,.$$

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Definition of Differential Equations on Manifolds

Suppose we have an (n - m)-dimensional submanifold of \mathbb{R}^n ,

$$\mathcal{M} := \{ y \in \mathbb{R}^n ; g(y) = 0 \}, \quad g : \mathbb{R}^n \mapsto \mathbb{R}^m,$$

and a differential equation $\dot{y} = f(y)$ with the property that

$$y_0 \in \mathcal{M}$$
 implies $y(t) \in \mathcal{M}$ for all t .

In this situation we call g(y) a *weak invariant*, and we say that $\dot{y} = f(y)$ is a differential equation on the manifold.

伺 ト く ヨ ト く ヨ ト

Characterization of Differential Equations on Manifolds

Theorem

Let \mathcal{M} be manifold of \mathbb{R}^n . The problem $\dot{y} = f(y)$ is a differential equation on the manifold \mathcal{M} , if and only if

 $f(y) \in T_y \mathcal{M}$ for all $y \in \mathcal{M}$.

A B > A B >

Characterization of Differential Equations on Manifolds

Theorem

Let \mathcal{M} be manifold of \mathbb{R}^n . The problem $\dot{y} = f(y)$ is a differential equation on the manifold \mathcal{M} , if and only if

 $f(y) \in T_y \mathcal{M}$ for all $y \in \mathcal{M}$.

The proof implies that locally $\dot{y} = f(y)$ is equivalent to the differential equation

$$\dot{z} = \Psi'(z)^+ f(\Psi(z))$$

in the parameter domain, where

$$\Psi'(z)^+ := \left(\Psi'(z)^\top \Psi'(z)
ight)^{-1} \Psi'(z)^\top \, .$$

Algorithm

Assume that $y_n \in \mathcal{M}$ and that Ψ is a local parametrization of the manifold \mathcal{M} satsifying $\Psi(z_n) = y_n$. One step $y_n \mapsto y_{n+1}$ is defined as follows:

3

Algorithm

Assume that $y_n \in \mathcal{M}$ and that Ψ is a local parametrization of the manifold \mathcal{M} satsifying $\Psi(z_n) = y_n$. One step $y_n \mapsto y_{n+1}$ is defined as follows:

• Compute $z_{n+1} = \Phi_h(z_n)$, the result of the method Φ_h applied to

$$\dot{z} = \Psi'(z)^+ f(\Psi(z))$$

in the parameter domain.

3

Algorithm

Assume that $y_n \in \mathcal{M}$ and that Ψ is a local parametrization of the manifold \mathcal{M} satsifying $\Psi(z_n) = y_n$. One step $y_n \mapsto y_{n+1}$ is defined as follows:

• Compute $z_{n+1} = \Phi_h(z_n)$, the result of the method Φ_h applied to

$$\dot{z} = \Psi'(z)^+ f(\Psi(z))$$

in the parameter domain.

2 Define the numerical solution by $y_{n+1} = \Psi(z_{n+1})$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Algorithm

Assume that $y_n \in \mathcal{M}$ and that Ψ is a local parametrization of the manifold \mathcal{M} satsifying $\Psi(z_n) = y_n$. One step $y_n \mapsto y_{n+1}$ is defined as follows:

• Compute $z_{n+1} = \Phi_h(z_n)$, the result of the method Φ_h applied to

$$\dot{z} = \Psi'(z)^+ f(\Psi(z))$$

in the parameter domain.

② Define the numerical solution by $y_{n+1} = \Psi(z_{n+1})$.

It is important to remark that the parametrization $y = \Psi(z)$ can be changed at every step.

Generalized Coordinate Partitioning Wehage & Haug 1982

Assume that the manifold \mathcal{M} is given a constraint $g : \mathbb{R}^n \mapsto \mathbb{R}^m$. If the jacobian g'(y) has full rank m at y = a, then we can find a partition $y = (y_1, y_2)$, such that

 $\frac{\partial g}{\partial y_2}(a)$

is invertible. In this case we can choose $z = y_1$ as local coordinates and the function $y = \Psi(z)$ is defined by $y_1 = z$ and $y_2 = \Psi_2(z)$, where $\Psi_2(z)$ is implicitly given by

$$g(z,\Psi_2(z))=0.$$

The partition can be obtained from a QR decomposition applied to the matrix g'(a).

Tangent Space Parametrization Potra & Rheinboldt 1991

Assume again that the manifold \mathcal{M} is given a constraint $g: \mathbb{R}^n \mapsto \mathbb{R}^m$, and collect the vectors of an orthonormal basis of $T_a \mathcal{M}$ in the matrix Q. We consider the parametrization

$$\Psi(z) := a + Qz + g'(a)^{\top} u(z) \,,$$

where the function $u : \mathbb{R}^{n-m} \mapsto \mathbb{R}^n$ is defined by $g(\Psi(z)) = 0$. Since $Q^\top Q = I$ and $g'(a)^\top Q = 0$ the differential equation in the parameter domain reduces to

$$\dot{z} = Q^{ op} f(\Psi(z))$$
.

伺 ト イ ヨ ト イ ヨ ト