Numerical Methods Based On Local Coordinates

Patrick Meury
meury@math.ethz.ch

SAM Seminar für angewandte Mathematik

$$
5 \text { December } 2005
$$

Outline

(1) Manifolds and Tangent Space
(2) Differential Equations on Manifolds
(3) Numerical Integrators on Manifolds

Definitions of Manifolds

Definition (Local constraints)

Let U be a neighbourhood of $a \in \mathbb{R}^{n}, g: U \mapsto \mathbb{R}^{m}$ a differentiable map with $g(a)=0$ and assume that $g^{\prime}(a)$ has full rank m. Then a manifold \mathcal{M} is locally given by

$$
\mathcal{M}:=\{y \in U ; g(y)=0\}
$$

Definition (Local parameters)

Let $V \subset \mathbb{R}^{n-m}$ be a neighbourhood of $0, \Psi: V \mapsto \mathbb{R}^{n}$ a differentiable map with $\Psi(0)=a$ and assume that $\Psi^{\prime}(0)$ has full rank $n-m$. Then a manifold \mathcal{M} is locally given by

$$
\mathcal{M}:=\{y=\Psi(z) ; z \in V\}
$$

Definition of Tangent Space

A tangent to a curve (or the tangent plane to a surface) is an affine space passing through the contact point $a \in \mathcal{M}$.

Definition (Tangent space)

For a manifold \mathcal{M} we define the tangent space at $a \in \mathcal{M}$ by

$$
T_{a} \mathcal{M}:=\left\{v \in \mathbb{R}^{n} ; \begin{array}{l}
\exists \text { differentiable path } \gamma:(-\varepsilon, \varepsilon) \mapsto \mathbb{R}^{n} \\
\text { with } \gamma(t) \in \mathcal{M} \forall t, \gamma(0)=a, \dot{\gamma}(0)=v
\end{array}\right\}
$$

Characterization of Tangent Space

Lemma

If the manifold \mathcal{M} is locally given by a constraint $g: U \mapsto \mathbb{R}^{m}$, wich is differentiable with $g(a)=0$ and rank $g^{\prime}(a)=m$, then we have

$$
T_{a} \mathcal{M}=\operatorname{Ker} g^{\prime}(a)
$$

If the manifold \mathcal{M} is locally given by a parametrization $\Psi: V \mapsto \mathbb{R}^{n}$, which is differentiable with $\Psi(0)=a$ and rank $\Psi^{\prime}(0)=n-m$, then we have

$$
T_{a} \mathcal{M}=\operatorname{Im} \Psi^{\prime}(0)
$$

Definition of Differential Equations on Manifolds

Suppose we have an $(n-m)$-dimensional submanifold of \mathbb{R}^{n},

$$
\mathcal{M}:=\left\{y \in \mathbb{R}^{n} ; g(y)=0\right\}, \quad g: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}
$$

and a differential equation $\dot{y}=f(y)$ with the property that

$$
y_{0} \in \mathcal{M} \quad \text { implies } \quad y(t) \in \mathcal{M} \text { for all } t .
$$

In this situation we call $g(y)$ a weak invariant, and we say that $\dot{y}=f(y)$ is a differential equation on the manifold.

Characterization of Differential Equations on Manifolds

Theorem

Let \mathcal{M} be manifold of \mathbb{R}^{n}. The problem $\dot{y}=f(y)$ is a differential equation on the manifold \mathcal{M}, if and only if

$$
f(y) \in T_{y} \mathcal{M} \text { for all } y \in \mathcal{M}
$$

Characterization of Differential Equations on Manifolds

Theorem

Let \mathcal{M} be manifold of \mathbb{R}^{n}. The problem $\dot{y}=f(y)$ is a differential equation on the manifold \mathcal{M}, if and only if

$$
f(y) \in T_{y} \mathcal{M} \text { for all } y \in \mathcal{M}
$$

The proof implies that locally $\dot{y}=f(y)$ is equivalent to the differential equation

$$
\dot{z}=\Psi^{\prime}(z)^{+} f(\Psi(z))
$$

in the parameter domain, where

$$
\Psi^{\prime}(z)^{+}:=\left(\Psi^{\prime}(z)^{\top} \Psi^{\prime}(z)\right)^{-1} \Psi^{\prime}(z)^{\top}
$$

Algorithm

Assume that $y_{n} \in \mathcal{M}$ and that Ψ is a local parametrization of the manifold \mathcal{M} satsifying $\Psi\left(z_{n}\right)=y_{n}$. One step $y_{n} \mapsto y_{n+1}$ is defined as follows:

Algorithm

Assume that $y_{n} \in \mathcal{M}$ and that Ψ is a local parametrization of the manifold \mathcal{M} satsifying $\Psi\left(z_{n}\right)=y_{n}$. One step $y_{n} \mapsto y_{n+1}$ is defined as follows:
(1) Compute $z_{n+1}=\Phi_{h}\left(z_{n}\right)$, the result of the method Φ_{h} applied to

$$
\dot{z}=\Psi^{\prime}(z)^{+} f(\Psi(z))
$$

in the parameter domain.

Algorithm

Assume that $y_{n} \in \mathcal{M}$ and that Ψ is a local parametrization of the manifold \mathcal{M} satsifying $\Psi\left(z_{n}\right)=y_{n}$. One step $y_{n} \mapsto y_{n+1}$ is defined as follows:
(1) Compute $z_{n+1}=\Phi_{h}\left(z_{n}\right)$, the result of the method Φ_{h} applied to

$$
\dot{z}=\Psi^{\prime}(z)^{+} f(\Psi(z))
$$

in the parameter domain.
(2) Define the numerical solution by $y_{n+1}=\Psi\left(z_{n+1}\right)$.

Algorithm

Assume that $y_{n} \in \mathcal{M}$ and that Ψ is a local parametrization of the manifold \mathcal{M} satsifying $\Psi\left(z_{n}\right)=y_{n}$. One step $y_{n} \mapsto y_{n+1}$ is defined as follows:
(1) Compute $z_{n+1}=\Phi_{h}\left(z_{n}\right)$, the result of the method Φ_{h} applied to

$$
\dot{z}=\Psi^{\prime}(z)^{+} f(\Psi(z))
$$

in the parameter domain.
(2) Define the numerical solution by $y_{n+1}=\Psi\left(z_{n+1}\right)$.

It is important to remark that the parametrization $y=\Psi(z)$ can be changed at every step.

Generalized Coordinate Partitioning

Wehage \& Haug 1982

Assume that the manifold \mathcal{M} is given a constraint $g: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$. If the jacobian $g^{\prime}(y)$ has full rank m at $y=a$, then we can find a partition $y=\left(y_{1}, y_{2}\right)$, such that

$$
\frac{\partial g}{\partial y_{2}}(a)
$$

is invertible. In this case we can choose $z=y_{1}$ as local coordinates and the function $y=\Psi(z)$ is defined by $y_{1}=z$ and $y_{2}=\Psi_{2}(z)$, where $\Psi_{2}(z)$ is implicitly given by

$$
g\left(z, \Psi_{2}(z)\right)=0
$$

The partition can be obtained from a QR decomposition applied to the matrix $g^{\prime}(a)$.

Tangent Space Parametrization
 Potra \& Rheinboldt 1991

Assume again that the manifold \mathcal{M} is given a constraint $g: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$, and collect the vectors of an orthonormal basis of $T_{a} \mathcal{M}$ in the matrix Q. We consider the parametrization

$$
\Psi(z):=a+Q z+g^{\prime}(a)^{\top} u(z),
$$

where the function $u: \mathbb{R}^{n-m} \mapsto \mathbb{R}^{n}$ is defined by $g(\Psi(z))=0$. Since $Q^{\top} Q=I$ and $g^{\prime}(a)^{\top} Q=0$ the differential equation in the parameter domain reduces to

$$
\dot{z}=Q^{\top} f(\Psi(z)) .
$$

