Pre	nin		

Composition Methods

Splitting Methods

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Summary

Composition and Splitting Methods

Book Sections II.4 and II.5

Claude Gittelson

Seminar on Geometric Numerical Integration

21.11.2005

Preliminaries	The Adjoint of a Method	Composition Methods	Splitting Methods	Summary
Outline				

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Definition
- Properties
- 2 Composition Methods
 - Definition
 - Order Increase

3 Splitting Methods

- Idea
- Examples
- Connection to Composition Methods

Preliminaries	The Adjoint of a Method	Composition Methods	Splitting Methods	Summary
Prelimin	aries			

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Notation

 autonomous differential equation

$$\dot{y} = f(y)$$
, $y(t_0) = y_0$,

- its exact flow φ_t , and
- numerical method Φ_h , i.e. $y_1 = \Phi_h(y_0)$.

Composition Methods

Splitting Methods

Summary

Preliminaries

Notation

 autonomous differential equation

$$\dot{y} = f(y)$$
, $y(t_0) = y_0$,

- its exact flow φ_t , and
- numerical method Φ_h , i.e. $y_1 = \Phi_h(y_0)$.

Basic Facts

•
$$\varphi_h(y) = y + \mathcal{O}(h)$$

• p : order of Φ_h $e := \Phi_h(y) - \varphi_h(y)$ error

$$e = C(y)h^{p+1} + \mathcal{O}(h^{p+2})$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Preliminaries

The Adjoint of a Method ●○○ Composition Methods

Splitting Methods

Summary

Definition of the Adjoint Method

Definition

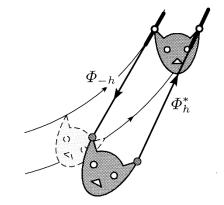
The adjoint of Φ_h is

$$\Phi_h^* := \Phi_{-h}^{-1}.$$

It is defined implicitly by

$$y_1 = \Phi_h^*(y_0)$$
 iff $y_0 = \Phi_{-h}(y_1)$.

 Φ_h is symmetric, if $\Phi_h^* = \Phi_h$.



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Composition Methods

Splitting Methods

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Summary

Properties of the Adjoint Method

Remark

- Note that φ⁻¹_{-t} = φ_t, but in general Φ^{*}_h = Φ⁻¹_{-h} ≠ Φ_h.
- The adjoint method satisfies (Φ_h^{*})^{*} = Φ_h and (Φ_h ∘ Ψ_h)^{*} = Ψ_h^{*} ∘ Φ_h^{*}.

Composition Methods

Splitting Methods

Summary

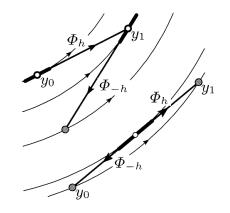
Properties of the Adjoint Method

Remark

- Note that φ⁻¹_{-t} = φ_t, but in general Φ^{*}_h = Φ⁻¹_{-h} ≠ Φ_h.
- The adjoint method satisfies (Φ_h^{*})^{*} = Φ_h and (Φ_h ∘ Ψ_h)^{*} = Ψ_h^{*} ∘ Φ_h^{*}.

Example

- (explicit Euler)* = implicit Euler
- (implicit midpoint)* = implicit midpoint



Preliminaries

The Adjoint of a Method

Composition Methods

Splitting Methods

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Summary

Order of the Adjoint Method

Theorem

• If Φ_h has order p and satisfies

$$\Phi_h(y_0) - \varphi_h(y_0) = C(y_0)h^{p+1} + \mathcal{O}(h^{p+2}),$$

then Φ_h^* also has order p and satisfies

$$\Phi_h^*(y_0) - \varphi_h(y_0) = (-1)^p C(y_0) h^{p+1} + \mathcal{O}(h^{p+2}).$$

2 In particular, if Φ_h is symmetric, its order is even.

Preliminaries

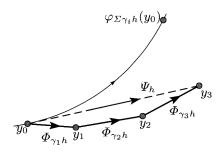
The Adjoint of a Method

Composition Methods

Splitting Methods

Summary

Definition of Composition Methods



Definition

Let $\Phi_h^1, \ldots, \Phi_h^s$ be one step methods. Composition

$$\Psi_h := \Phi^s_{\gamma_s h} \circ \ldots \circ \Phi^1_{\gamma_1 h}$$
,

where $\gamma_1, \ldots, \gamma_s \in \mathbb{R}$.

Example

•
$$\Phi_h^1 = \ldots = \Phi_h^s =: \Phi_h$$

• $\Phi_h^{2k} = \Phi_h \text{ and } \Phi_h^{2k-1} = \Phi_h^*$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Preliminaries	The Adjoint of a Method	Composition Methods ○●○○	Splitting Methods	Summary
Order In of General C	Crease			

Theorem

Let
$$\Psi_h := \Phi^s_{\gamma_s h} \circ \ldots \circ \Phi^1_{\gamma_1 h}$$
 with Φ^k_h of order p and
 $\Phi^k_h(y) - \varphi_h(y) = C_k(y)h^{p+1} + \mathcal{O}(h^{p+2})$
If

$$\gamma_1+\ldots+\gamma_s=1$$
 ,

then Ψ_h has order p + 1 if and only if

$$\gamma_1^{p+1}C_1(y) + \ldots + \gamma_s^{p+1}C_s(y) = 0.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ へ ○

Preliminaries	The Adjoint of a Method	Composition Methods	Splitting Methods	Summary

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Order Increase of Compositions of a Single Method

Corollary

If $\Psi_h = \Phi_{\gamma_s h} \circ \ldots \circ \Phi_{\gamma_1 h}$, then the conditions are

$$\gamma_1 + \ldots + \gamma_s = 1$$

$$\gamma_1^{p+1} + \ldots + \gamma_s^{p+1} = 0.$$

Remark

A solution only exists if *p* is even.

Preliminaries

The Adjoint of a Method

Composition Methods

Splitting Methods

Summary

Order Increase of Compositions of a Single Method

Corollary

If $\Psi_h = \Phi_{\gamma_s h} \circ \ldots \circ \Phi_{\gamma_1 h}$, then the conditions are

$$\gamma_1 + \ldots + \gamma_s = 1$$

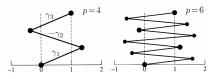
$$\gamma_1^{p+1} + \ldots + \gamma_s^{p+1} = 0.$$

Remark

A solution only exists if *p* is even.

Example

 $s = 3, \Phi_h$ symmetric, order $p = 2, \gamma_1 = \gamma_3.$ Then $\Psi_h = \Phi_{\gamma_3 h} \circ \Phi_{\gamma_2 h} \circ \Phi_{\gamma_1 h}$ is also symmetric, order $\geq 3.$ Symmetric \Rightarrow order even \Rightarrow order 4. So repeated application is possible.



(日)

Preliminaries	The Adjoint of a Method	Composition Methods ○○○●	Splitting Methods	Summary
Ordor Ir				

of Compositions with the Adjoint Method

Corollary

lf

$$\Psi_h=\Phi_{lpha_sh}\circ\Phi^*_{eta_sh}\circ\ldots\circ\Phi^*_{eta_2h}\circ\Phi_{lpha_1h}\circ\Phi^*_{eta_1h}$$
 ,

then the conditions are

$$\beta_1 + \alpha_1 + \ldots + \beta_s + \alpha_s = 1$$

(-1)^p $\beta_1^{p+1} + \alpha_1^{p+1} + \ldots + (-1)^p \beta_s^{p+1} + \alpha_s^{p+1} = 0$

Example

$$\Psi_h := \Phi_{\frac{h}{2}} \circ \Phi_{\frac{h}{2}}^*$$
 is symmetric, order $p + 1$.

- Φ_h explicit Euler $\Rightarrow \Psi_h$ implicit midpoint
- Φ_h implicit Euler $\Rightarrow \Psi_h$ trapezoidal rule

Preliminaries

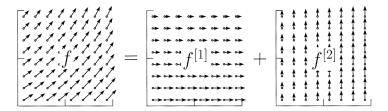
The Adjoint of a Method

Composition Methods

Splitting Methods

Summary

Idea: Split the Vector Field



Idea

Preliminaries	The Adjoint of a Method	Composition Methods	Splitting Methods	Summary
Motivati	on			

Example

$$\dot{y} = (a+b)y$$
, then $\varphi_t^a(y_0) = e^{at}y_0$ and $\varphi_t^b(y_0) = e^{bt}y_0$, so

$$(\varphi_t^a \circ \varphi_t^b)(y_0) = e^{at} e^{bt} y_0 = e^{(a+b)t} y_0 = \varphi_t(y_0)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Preliminaries	The Adjoint of a Method	Composition Methods	Splitting Methods	Summary
Motivati	on			

Example

$$\dot{y} = (a+b)y$$
, then $\varphi_t^a(y_0) = e^{at}y_0$ and $\varphi_t^b(y_0) = e^{bt}y_0$, so

$$(\varphi_t^a \circ \varphi_t^b)(y_0) = e^{at}e^{bt}y_0 = e^{(a+b)t}y_0 = \varphi_t(y_0)$$

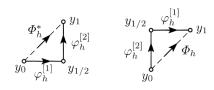
Lie-Trotter Formula

$$\begin{split} \dot{y} &= (A+B)y \quad \text{for } A, B \in \mathbb{C}^{N \times N}.\\ \varphi_t^A(y_0) &= e^{At}y_0 \quad \text{and} \quad \varphi_t^B(y_0) = e^{Bt}y_0\\ \text{Lie Trotter formula} \quad & \lim_{n \to \infty} \left(e^{A\frac{t}{n}} e^{B\frac{t}{n}} \right)^n = e^{(A+B)t}\\ \text{SO} \quad & \left(\varphi_{\frac{t}{n}}^A \circ \varphi_{\frac{t}{n}}^B \right)^n (y_0) \to \varphi_t(y_0) \end{split}$$

Preliminaries	The Adjoint of a Method	Composition Methods	Splitting Methods ○○●○○○	Summary

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Examples of Splittings



Example (Lie-Trotter Splitting)

$$\begin{split} \Phi_h &= \varphi_h^{[1]} \circ \varphi_h^{[2]} \\ \Phi_h^* &= \varphi_h^{[2]} \circ \varphi_h^{[1]} \end{split}$$

Preliminaries			

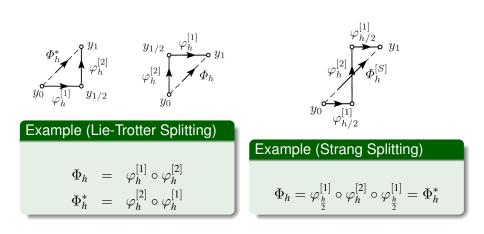
Composition Methods

Splitting Methods

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Summary

Examples of Splittings



Preliminaries	The Adjoint of a Method	Composition Met

Splitting Methods

Summary

Application to Separable Hamiltonian Systems

Example

• Separable Hamiltonian H(p,q) = T(p) + U(q)

$$\begin{pmatrix} \dot{p} \\ \dot{q} \end{pmatrix} = \begin{pmatrix} -H_q \\ H_p \end{pmatrix} = \begin{pmatrix} 0 \\ T_p \end{pmatrix} + \begin{pmatrix} -U_q \\ 0 \end{pmatrix}$$

hods

Preliminaries	The Adjoint of a Method	Composition Methods	Splitting Methods
			000000

Application to Separable Hamiltonian Systems

Example

• Separable Hamiltonian H(p,q) = T(p) + U(q)

$$\begin{pmatrix} \dot{p} \\ \dot{q} \end{pmatrix} = \begin{pmatrix} -H_q \\ H_p \end{pmatrix} = \begin{pmatrix} 0 \\ T_p \end{pmatrix} + \begin{pmatrix} -U_q \\ 0 \end{pmatrix}$$

Exact flows

$$\varphi_t^T \begin{pmatrix} p_0 \\ q_0 \end{pmatrix} = \begin{pmatrix} p_0 \\ q_0 + t T_p(p_0) \end{pmatrix}, \quad \varphi_t^U \begin{pmatrix} p_0 \\ q_0 \end{pmatrix} = \begin{pmatrix} p_0 - t U_q(q_0) \\ q_0 \end{pmatrix}$$

Preliminaries	The Adjoint of a Method	Composition Methods	Splitting M
			000000

Application to Separable Hamiltonian Systems

Example

• Separable Hamiltonian H(p,q) = T(p) + U(q)

$$egin{pmatrix} \dot{p}\ \dot{q} \end{pmatrix} = egin{pmatrix} -H_q\ H_p \end{pmatrix} = egin{pmatrix} 0\ T_p \end{pmatrix} + egin{pmatrix} -U_q\ 0 \end{pmatrix}$$

Exact flows

$$\varphi_t^T \begin{pmatrix} p_0 \\ q_0 \end{pmatrix} = \begin{pmatrix} p_0 \\ q_0 + t T_p(p_0) \end{pmatrix}, \quad \varphi_t^U \begin{pmatrix} p_0 \\ q_0 \end{pmatrix} = \begin{pmatrix} p_0 - t U_q(q_0) \\ q_0 \end{pmatrix}$$

• Lie-Trotter splitting $\Phi_h = \varphi_h^T \circ \varphi_h^U$

$$p_{n+1} = p_n - h \cdot U_q(q_n)$$

$$q_{n+1} = q_n + h \cdot T_p(p_{n+1})$$

Preliminaries	The Adjoint of a Method	Composition Methods	Splitting N
			000000

Application to Separable Hamiltonian Systems

Example

• Separable Hamiltonian H(p,q) = T(p) + U(q)

$$egin{pmatrix} \dot{p}\ \dot{q} \end{pmatrix} = egin{pmatrix} -H_q\ H_p \end{pmatrix} = egin{pmatrix} 0\ T_p \end{pmatrix} + egin{pmatrix} -U_q\ 0 \end{pmatrix}$$

Exact flows

$$\varphi_t^T \begin{pmatrix} p_0 \\ q_0 \end{pmatrix} = \begin{pmatrix} p_0 \\ q_0 + t T_p(p_0) \end{pmatrix}, \quad \varphi_t^U \begin{pmatrix} p_0 \\ q_0 \end{pmatrix} = \begin{pmatrix} p_0 - t U_q(q_0) \\ q_0 \end{pmatrix}$$

• Lie-Trotter splitting $\Phi_h = \varphi_h^T \circ \varphi_h^U \rightsquigarrow$ symplectic Euler

$$p_{n+1} = p_n - h \cdot U_q(p_{n+1}, q_n)$$

$$q_{n+1} = q_n + h \cdot T_p(p_{n+1}, q_n)$$

	inar	

Composition Methods

Splitting Methods

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Summary

Construction as a Composition Method

Lemma

$$\Phi_{h}^{[i]} \text{ consistent method for } \dot{y} = f^{[i]}(y).$$

$$\Phi_{h} := \Phi_{h}^{[1]} \circ \Phi_{h}^{[2]} \circ \ldots \circ \Phi_{h}^{[N]},$$

then Φ_{h} has order 1 for $\dot{y} = f(y) = f^{[1]}(y) + f^{[2]}(y) + \ldots + f^{[N]}(y).$

Construction as a Composition Method

Lemma

$$\Phi_{h}^{[i]} \text{ consistent method for } \dot{y} = f^{[i]}(y).$$

$$\Phi_{h} := \Phi_{h}^{[1]} \circ \Phi_{h}^{[2]} \circ \ldots \circ \Phi_{h}^{[N]},$$

then Φ_{h} has order 1 for $\dot{y} = f(y) = f^{[1]}(y) + f^{[2]}(y) + \ldots + f^{[N]}(y).$

Idea

Compose Φ_h , Φ_h^* to construct method Ψ_h of higher order. In the case N = 2: $\Phi_h = \Phi_h^{[1]} \circ \Phi_h^{[2]}$, $\Phi_h^* = \Phi_h^{[2]*} \circ \Phi_h^{[1]*}$ and

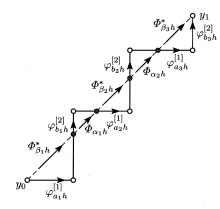
$$\begin{split} \Psi_h &= \Phi_{\alpha_s h} \circ \Phi^*_{\beta_s h} \circ \ldots \circ \Phi^*_{\beta_2 h} \circ \Phi_{\alpha_1 h} \circ \Phi^*_{\beta_1 h} \\ &= \Phi^{[1]}_{\alpha_s h} \circ \Phi^{[2]}_{\alpha_s h} \circ \Phi^{[2]*}_{\beta_s h} \circ \Phi^{[1]*}_{\beta_s h} \circ \ldots \circ \Phi^{[2]}_{\alpha_1 h} \circ \Phi^{[2]*}_{\beta_1 h} \circ \Phi^{[1]*}_{\beta_1 h} \end{split}$$

Composition Methods

Splitting Methods

Summary

Calculate Exact Flows Explicitly



Remark

If
$$\Phi_h^{[i]} = \varphi_h^{[i]} \ \forall i$$
, then $\Phi_h^{[i]*} = \varphi_h^{[i]}$
and
 $\Psi_h = \varphi_{\alpha_s h}^{[1]} \circ \varphi_{(\alpha_s + \beta_s)h}^{[2]} \circ \ldots \circ \varphi_{\beta_1 h}^{[1]}.$

Remark

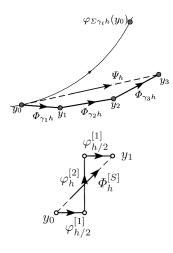
For N = 2, Ψ_h can be thought of as

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

- a composition of Φ_h, Φ_h^*
- a "composition" of $\varphi_h^{[i]}$

Preliminaries	The Adjoint of a Method	Composition Methods	Splitting Methods	Summary
Summar	v			



- Composition methods
 - construct methods of high order
 - preserve properties (e.g. symmetry)
- Splitting methods
 - construct methods for specific problems
 - calculate exact flows of parts of the vector field explicitly

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●