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Overview

1 Introduction

2
PML in one dimension

• Classical absorbing layers

• One-dimensional PML’s

• Approach with complex change of variables

3
PML in two dimensions

• PML for a general linear system

• Accoustic waves

• Discretization and numerical problems
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Introduction

Task

• Solution of wave
scattering problem.

• Interesting region is
bounded.

• The problem has to be
solved numerically.
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Task

• Solution of wave
scattering problem.

• Interesting region is
bounded.

• The problem has to be
solved numerically.

=⇒

Problem

• Need to discretize
space.

• Finite elements/finite
differences.

⇒ Need to bound the area
of computation.

⇓
Solution

• Absorbing Boundary
Conditions: Differential
equations at the
boundary.

• "Classical" absorbing
layers.

• Perfectly Matched
Layers .

⇐=

Idea

• Construct artificial
boundary.

• Transparent for the
solution.

• Totally absorbs incom-
ing waves, no reflec-
tions.

Introduction to PML in time domain - Alexander Thomann – p.3



Absorbing Layers in 1D

Consider the 1D wave equation with velocity 1:

∂2u

∂t2
− ∂2u

∂x2
= 0, x ∈ R, t > 0.

• As a first illustrative example we restrict the computational domain to x < 0.

• We therefore have to impose an Absorbing Boundary Condition at x = 0.

• In fact we dispose of a very simple and even local condition:

∂u

∂t
+

∂u

∂x
= 0, x = 0, t > 0.
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Absorbing Layers in 1D

Consider the 1D wave equation with velocity 1:

∂2u

∂t2
− ∂2u

∂x2
= 0, x ∈ R, t > 0.

• As a first illustrative example we restrict the computational domain to x < 0.

• We therefore have to impose an Absorbing Boundary Condition at x = 0.

• In fact we dispose of a very simple and even local condition:

∂u

∂t
+

∂u

∂x
= 0, x = 0, t > 0.

=⇒ No exact local analogue in higher dimensions!

Let us therefore find a transparent condition through an absorbing layer, infinite first
and then in the interval [0, L].
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Classical Absorbing Layers

In order to damp waves through a physical mechanism, we can add two terms to
the wave equation,

• fluid friction: ν ∂u
∂t

, ν ≥ 0,

• viscous friction: − ∂
∂x

(ν∗ ∂2u
∂x∂t

), ν∗ ≥ 0.

We then obtain the equation

∂2u

∂t2
+ ν

∂u

∂t
− ∂

∂x

„
∂u

∂x
+ ν∗ ∂2u

∂x∂t

«
= 0.

The solution is

u(x, t) = Aei(ωt−k(ω)x) + Bei(ωt+k(ω)x), k(ω)2 =
ω2 − iων

1 + iων∗
, ℑk(ω) ≤ 0.

A natural choice thus would be

ν(x) = 0, ν∗(x) = 0, x < 0,

ν(x) > 0, ν∗(x) > 0, x > 0.
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∂2u

∂t2
− ∂

∂x

„
∂u

∂x

«
= 0,

∂2u

∂t2
+ ν

∂u

∂t
− ∂

∂x

„
∂u

∂x
+ ν∗ ∂2u

∂x∂t

«
= 0.

x=0

The larger ν and ν∗, the smaller can we later on choose the length L of the
absorbing layer.
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∂2u

∂t2
− ∂

∂x

„
∂u

∂x

«
= 0,

∂2u

∂t2
+ ν

∂u

∂t
− ∂

∂x

„
∂u

∂x
+ ν∗ ∂2u

∂x∂t

«
= 0.

x=0

The larger ν and ν∗, the smaller can we later on choose the length L of the
absorbing layer.

But consider

u(x, t) =

8
><
>:

eiω(t−x) + R(ω)eiω(t+x), x < 0,

T (ω)ei(ωt−k(ω)x), x > 0.

1

R(ω)

T(ω)

x=0

We impose the right bound-
ary conditions,

u(0−) = u(0+),

∂u

∂x
(0−) = (

∂u

∂x
+ ν∗ ∂2u

∂x∂t
)(0+).
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This leads to R(ω) =
ω − k(ω)(1 + iων∗)

ω + k(ω)(1 + iων∗)
, lim

ν→∞
|R(ω)| = lim

ν∗→∞
|R(ω)| = 1

T (ω) = 1 + R(ω),
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This leads to R(ω) =
ω − k(ω)(1 + iων∗)

ω + k(ω)(1 + iων∗)
, lim

ν→∞
|R(ω)| = lim

ν∗→∞
|R(ω)| = 1

T (ω) = 1 + R(ω),

The more a layer is absorbing, the more it is also reflecting!

Reflection at a visco-elastic layer. On the right side the absorption and
therefore the reflection is stronger (Joly).
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Perfectly Matched Layers in 1D

This was not satisfactory. In order to suppress reflections we want perfect adaption.

For that reason, we return to the wave-equation with variable coefficients. With
ρ, µ > 0 we have

ρ(x)
∂2u

∂t2
− ∂

∂x

„
µ(x)

∂u

∂x

«
= 0,

and define

• the velocity of propagation c(x) =
p

µ(x)/ρ(x),

• the impedance z(x) =
p

µ(x)ρ(x).

We impose

u(x) = ei(ωt−kx) + R(ω)ei(ωt+kx), k = ω
c(x)

, c(x) = c, z(x) = z, x < 0,

u(x) = T (ω)ei(ωt−k(ω)x), k = ω
c(x)

, c(x) = c∗, z(x) = z∗, x > 0.
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With the right boundary conditions,

u(0−) = u(0+),

µ(0−)
∂u

∂x
(0−) = µ(0+)

∂u

∂x
(0+),

we find

R =
z − z∗
z + z∗

, T =
2z

z + z∗
.

• It is obvious that R = 0 if z = z∗.

• We thus need impedance-matching .

• But how can we make the layer absorbing at the same time?

• For that reason we change to frequency-space. Then we arrive at the
Helmholtz-equation

−bρ(x, ω)ω2u − ∂

∂x

„
bµ(x, ω)

∂u

∂x

«
= 0, bρ, bµ > 0.
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The Idea

The idea is simple but effective: We choose d(ω) ∈ C and

bρ(x, ω) ≡ ρ, bµ(x, ω) ≡ µ, x < 0,

bρ(x, ω) =
ρ

d(ω)
, bµ(x, ω) = µ · d(ω), x > 0.

This then actually leads to

bz(x < 0) = bz(x > 0) =
√

ρµ =⇒ we have impedance-matching,

bc(x < 0) =
p

µ/ρ = c, bc(x > 0) = c · d(ω) ∈ C =⇒ we can make the layer absorbing.

• It must be possible to return to time domain.

• Then the equation needs to be constructed out of differential operators.

⇒ A crucial condition is thus that d(ω) is a rational funtion in the variable iω
with real coefficients.
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Analysis of the Solution

Writing d(ω)−1 = a + ib, we have the solutions

u(x) = eiω(t± ax
c

)∓ω bx
c , ωb < 0,

with

• phase velocity c/a,

• that decay with penetration depth l(ω) = c
|ωb|

in the direction of propagation.

Possible choice: a = 1, b = − σ
ω

, where σ is called the coefficient of absorption.

Then we have the simple case where

• l = c
σ

: absorption does not depend on the frequency,

• the phase velocity remains c,

• d(ω) = iω
iω+σ

.
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In frequency domain the wave-equation becomes

ρ(σ + iω)u − ∂

∂x

„
µ(σ + iω)−1 ∂u

∂x

«

| {z }
v

= 0,

which corresponds in time domain to the differential equation

∂2u

∂t2
+ 2σ

∂u

∂t
+ σ2u − c2 ∂2u

∂x2
= 0,

or as a first order system, describing a PML,

ρ

„
∂u

∂t
+ σu

«
− ∂v

∂x
= 0,

µ−1

„
∂v

∂t
+ σv

«
− ∂u

∂x
= 0.
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In 1D we have the energy identity

d

dt

„
1

2

Z
(ρ|u|2 + µ−1|v|2)dx

«
+

Z
σ(ρ|u|2 + µ−1|v|2)dx = 0.

As one can see,

• we do not only have dissipation in space but

• we additionally have proof for temporal dissipation!

All solutions to the 1D-equation are decaying!

There will be NO such proof in higher dimensions!
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Alternative Method

• The solutions of the Helmholtz-equation can be analytically continued on the
complex plane.

• Think of a complex path, were the physical world is the real trace.

• Parametrize it through the physical coordinate (X = X(x)).

• For x < 0 it shall be the real axis.

• For x > 0 the solution shall be exponentially decaying (⇒ ℑX < 0).

• After returning to the time domain, the equation must be written in terms of
partial differential equations.

⇒ The change of variables has to be rationally dependent of iω.

The following change of variables satisfies the conditions:

X(x) = x +
1

iω

Z x

o

σ(ξ)dξ,

where σ(x) typically is chosen to be σ(x) = 0 for x < 0 and σ(x) > 0 for x > 0.
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If eu(x) = u(X(x)), and u(x) is a solution of the Helmholtz-equation, then

− iω

iω + σ

∂

∂x

„
iω

iω + σ
µ

∂eu
∂x

«
− ρω2eu = 0.

• This is the equation we already found for the absorbing layer!

• We can thus always find a Perfectly Matched Layer.

• Even with a spatially dependent absorption profile σ(x).

Returning to ρ = µ = 1, one can even show that if u(x, t), v(x, t) are the solutions
for given initial data to

∂u

∂t
− ∂v

∂x
= 0,

∂v

∂t
− ∂u

∂x
= 0,

then the associated solutions for the (infinite) PML are

u∗(x, t) = u(x, t)e−
R

x
0

σ(ξ)dξ, v∗(x, t) = v(x, t)e−
R

x
0

σ(ξ)dξ.
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Infinite Layer

The propagation of a wave in with an infinite PML, with constant absorp-
tion profile σ on the left and variable profile σ(x) on the right (Joly).

But the goal is a finite layer,

=⇒ homogeneus Neumann-condition at x = L:

∂u

∂x
(L, t) = 0.

Introduction to PML in time domain - Alexander Thomann – p.16



Finite Layer

Boundary condition at x = L =⇒ reflected wave, with total solution

u(x, t) = u∗(x, t) + u∗(2L − x, t),

v(x, t) = v∗(x, t) − v∗(2L − x, t).

The propagation of a wave entering a finite PML, with constant
profile σ on the left and variable profile σ(x) on the right (Joly).
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PML in Two Dimensions

Consider (x, y) ∈ R
2 and the general linear hyperbolic system

∂U

∂t
+ Ax

∂U

∂x
+ Ay

∂U

∂y
= 0,

where U(x, y, t) ∈ R
m, m ≥ 1 and Ax,Ay ∈ R

m×m.

Let’s

• limit the computational domain to x < 0 (or x < L),

• and thus add a perfectly matched and absorbing layer to the normal region
x < 0.

• We first split U = Ux + Uy, where (Ux, Uy) is the solution to the system

∂Ux

∂t
+ Ax

∂

∂x
(Ux + Uy) = 0,

∂Uy

∂t
+ Ay

∂

∂y
(Ux + Uy) = 0.
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• We have isolated the derivative in the x- and y-direction.

• We now add an absorption-term σUx with σ ≥ 0 to the equation containing
the derivative in the x-direction and obtain

∂Ux

∂t
+ σUx + Ax

∂

∂x
(Ux + Uy) = 0,

∂Uy

∂t
+ Ay

∂

∂y
(Ux + Uy) = 0.

• It is clear that we can describe the one-dimensional PML-equation with this
system:

Ux =

"
u

v

#
, Uy =

"
0

0

#
, A =

"
0 ρ−1

µ 0

#
.

• Of course one will choose σ = 0 for x < 0 and σ > 0 for x > 0.

• One will not split the equations in the physical region but only in the PML and
couple the two solutions by U(0−) = Ux(0+) + Uy(0+) at x = 0.
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Complex Change of Variables

Changing to frequency space with a temporal fourier transform we arrive at the
“generalized Helmholtz-equation”,

iω bU + Ax
∂ bU
∂x

+ Ay
∂ bU
∂y

= 0.

Supposing that we can extend the solution bU onto the complex plane, we can look
at the function

eU(x) = bU
„

x +
1

iω

Z x

0

σ(ξ)dξ

«
.

eU(x) = bU(x) for x < 0 and

iω eU + Ax
∂ eU
∂x

„
iω

iω + σ

«
+ Ay

∂ eU
∂y

= 0,

=⇒ eU =

 
− 1

iω + σ
Ax

∂ eU
∂x

!

| {z }
eUx

+

 
− 1

iω
Ay

∂ eU
∂y

!

| {z }
eUy

.
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Going back to time domain, we finally have

„
∂

∂t
+ σ

«
eUx + Ax

∂ eU
∂x

= 0,
∂

∂t
eUy + Ay

∂ eU
∂y

= 0,

which is the previously found system.

But we have not yet proven the absorbing character of the constructed layer:

Special solutions of the not-absorbing equation in a (special) homogeneous region
are plane waves:

U(x, y, t) = U0e
i(ωt−kxx−kyy), kx, ky, ω ∈ R,

• k and ω are related through the dispersion relation.

• The solutions propagate with phase-velocity c = ω/|k|.
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In the PML, we have the change of variables

x → x +
1

iω

Z x

0

σ(ξ)dξ,

and the plane wave becomes

U(x, y, t) = U0e
i(ωt−kxx−kyy)− kx

ω

R
x
0

σ(ξ)dξ

• As the wave propagates, the wave is evanescent.

• In this manner we can speak of an absorbing layer.

• But our argument on the absorbance of the wave is dependent on its
propagation. To be correct, we would have to argument using the group
velocity.

• We do not have proof of temporal dissipation through the energy identity as in
one dimension.
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Acoustic Wave Equation

We start from the 2-dimensional acoustic wave equation,

ρ
∂2u

∂t2
− div(µ∇u) = 0,

and rewrite it as a system of order 1,

ρ
∂u

∂t
− ∂vx

∂x
− ∂vy

∂y
= 0,

µ−1 ∂vx

∂t
− ∂u

∂x
= 0,

µ−1 ∂vy

∂t
− ∂u

∂y
= 0.

• In order to rewrite the system as PML, we would have to split the vector
U = (u, vx, vy).

• But we can avoid splitting vx and vy .
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Writing the PML System

Splitting u and introducing the absorption coefficient σ we find the system

ρ

„
∂ux

∂t
+ σux

«
− ∂vx

∂x
= 0,

µ−1

„
∂vx

∂t
+ σvx

«
− ∂

∂x
(ux + uy) = 0,

ρ
∂uy

∂t
− ∂vy

∂y
= 0,

µ−1 ∂vy

∂t
− ∂

∂y
(ux + uy) = 0.

If ρ, µ and σ are constant, we can eliminate vx and vy and find the 4th order
equation

„
∂

∂t
+ σ

«2„
ρ
∂2u

∂t2
− µ

∂2u

∂y2

«
− µ

∂4u

∂x2∂t2
= 0.
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Absorption and Reflection of Plane Waves

In a homogeneous acoustic region we have c =
p

µ/ρ and the dispersion-relation

k2
x + k2

y =
ω2

c2
.

If θ is the angle of incidence, the solution is

u(x, t) = ei ω
c

(ct−x cos θ−y sin θ)

| {z }
∀x

e−
cos θ

c

R
x
0

σ(ξ)dξ

| {z }
x>0

.

• We end the PML at x = L with a homogeneous Neumann-condition.

• In the PML we get through simple reflection a particular solution of the form

u(x, t) = ei ω
c

(ct−x cos θ−y sin θ)e−
cos θ

c

R
x
0

σ(ξ)dξ

+ ei ω
c

(ct−(2L−x) cos θ−y sin θ)e−
cos θ

c

R
2L−x
0

σ(ξ)dξ.
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In the region x < 0 the solution becomes

u(x, t) = ei ω
c

(ct−x cos θ−y sin θ) + Rσ(θ)ei ω
c

(ct+x cos θ−y sin θ),

where we have set the coefficient of reflection to

Rσ(θ) = e−
2 cos θ

c

R
L
0

σ(ξ)dξ

| {z }
absorption

e−2i ωL
c| {z }

phaseshift

.

The total reflection is exponentially decreasing with

• the absorption σ,

• the length of the layer L,

• the angle of incidence cos(θ).

So far so good, but we have only analyzed exact solutions to the problem.

What happens if we treat the system numerically?
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Numerical Problems

Our goal A very thin layer L in order to accelerate the simulation.

Solution Let σ > 0 and constant arbitrarily big to let L become
arbitrarily small.
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Numerical Problems

Our goal A very thin layer L in order to accelerate the simulation.

Solution Let σ > 0 and constant arbitrarily big to let L become
arbitrarily small.

Problem This works only with the exact solution! The layer is no more
perfectly matched if we work with a numerical approximation
of the differential equations (finite differencies etc.)!
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Numerical Problems

Our goal A very thin layer L in order to accelerate the simulation.

Solution Let σ > 0 and constant arbitrarily big to let L become
arbitrarily small.

Problem This works only with the exact solution! The layer is no more
perfectly matched if we work with a numerical approximation
of the differential equations (finite differencies etc.)!

Therefore, the incident wave will give rise to
two reflected waves:

• A wave reflected at x = L, the
PML-wave.

• A wave reflected at x = 0, the numeri-
cal or discretization-wave.
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• The PML-wave is of the same nature as in the exact case. The amplitude is
(∆x is the step of discretization in space)

RPML = e−2 σL
c

cos θ(1 + O(∆x2)).

• The amplitude of the numerical wave is found to be

Rdisc ∼ const. · σ2∆x2, (∆x → 0).

• The amplitude of the numerical wave vanishes with ∆x.

• But it also grows quadratically with σ and the layer is less perfectly matched.

In order to fasten calculation,

we should increase both ∆x and σ,

but in order to minimize the errors

we should take them to be small.
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Variable Profiles

We actually choose a compromise:

• We impose many thin layers with increasing absorption coefficients σi.

• (σi+1 − σi) shall be small.

⇒ Additionally to the normal PML-reflection we will have a superposition of small
numerical reflections proportional to (σi+1 − σi)

2.

⇒ Their amplitudes will be exponentially damped by a factor of

ρi = e−
2

c

R xi
0

σ(ξ)dξ.
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Variable Profiles

We actually choose a compromise:

• We impose many thin layers with increasing absorption coefficients σi.

• (σi+1 − σi) shall be small.

⇒ Additionally to the normal PML-reflection we will have a superposition of small
numerical reflections proportional to (σi+1 − σi)

2.

⇒ Their amplitudes will be exponentially damped by a factor of

ρi = e−
2

c

R xi
0

σ(ξ)dξ.

Standard
choice:
Quadratic
absorption
profile σ(x):
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Examples (1)

1 Propagation of an
accoustic wave with
σ = const. at the left and
right boundary.

2 σ = const but a finer grid:
The reflections are smaller.

3 Quadratic absorption
profile σ(x): The reflected
waves have disappeared.

(Joly)
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Examples (2)

The solution at a single point and its evolu-
tion in time (Joly).

Blue: Constant profile with coarse grid.

Red: Constant profile with fine grid.

Green: Quadratic profile.
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Rectangular Domain

In most problems all boundaries need to be absorbing.

For a rectangular domain and a layer of length L, we impose the following
equations on the domain [−a − L, a + L] × [−b − L, b + L]:

ρ

„
∂ux

∂t
+ σx(x)ux

«
− ∂vx

∂x
= 0,

µ−1

„
∂vx

∂t
+ σx(x)vx

«
− ∂

∂x
(ux + uy) = 0,

ρ

„
∂uy

∂t
+ σy(y)uy

«
− ∂vy

∂y
= 0,

µ−1

„
∂vy

∂t
+ σy(y)vy

«
− ∂

∂y
(ux + uy) = 0,

where σx (σy) depends only on x (y) and its support is {0 < |x| − a < L}
({0 < |y| − b < L}).in
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With this procedure, the corners of the rectangle are automatically treated quite
simple.

Below, we see an illustration of this:

The calculation of an 2D-acoustic wave emitted by a single point-source (Joly).

Introduction to PML in time domain - Alexander Thomann – p.33



Summary

We have seen

• the reflections that occur at "physical" absorbing layers.

• that (exact) PML do suppress the reflections (impedance matching) and lead
to complex velocity.

• that we can describe this via a complex change of variables.

• the easy generalization of this method to higher dimension.

• that a convex (quadratic) absorption-profile σ(x) minimizes the numerical
reflections.
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Conclusion

The PML-method seems to have outranked the other available boundary
conditions. Especially since

• the PML are particularly simple to implement, at least with respect Absorbing
Boundary Conditions.

• they offer remarkable performance in many cases.

• they adapt without complications to a large number of problems/equations.

Although,

• even if essential progress has been made recently, the mathematical analysis
of these methods has not yet been completed.

• the competition between the PML and the Absorbing Boundary Conditions
has not come to an end yet.
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