Optimizing the perfectly matched layer
 by F. Collino, P. B. Monk

Norbert Stoop

Overview

- PML constructed using a change of variables
- Cartesian coordinates (review)
- Comparison to Bérenger's approach in cylindrical coordinates
- Discretization of PMLs and resulting effects
- Optimization of cartesian PMLs
- Effects of boundary conditions

Framework: Planar Maxwell equations

PML construction - Overview

We have already seen that a PML can be understood in two ways:

- Split the magnetic field and introduce a damping term σ (Bérenger's approach)
- Perform a complex change of variables

We will see:

1. cartesian case: both are equivalent
2. cylindrical coordinates: inequivalent, efficiency differs

Planar PML for cartesian coords

Consider a TE wave ($E_{z}=0$) in free space ($\epsilon_{0}=\mu_{0}=c=1$). The two-dimensional Maxwell equations then reduce to:

$$
\begin{array}{r}
\frac{\partial H_{z}}{\partial t}=\frac{\partial E_{x}}{\partial y}-\frac{\partial E_{y}}{\partial x} \\
\frac{\partial E_{y}}{\partial t}=-\frac{\partial H_{z}}{\partial x} \quad, \quad \frac{\partial E_{x}}{\partial t}=\frac{\partial H_{z}}{\partial y}
\end{array}
$$

Suppose we'd like to construct a 2D PML for $x>0$:

Bérenger PML for cart. coords

Bérenger:

1. Split H field: $H_{z}=H_{z x}+H_{z y}$ such that the MW equations can be written as:

$$
\begin{array}{cc}
\frac{\partial H_{z x}}{\partial t}=-\frac{\partial E_{y}}{\partial x} \quad, \quad \frac{\partial H_{z y}}{\partial t}=\frac{\partial E_{x}}{\partial y} \\
\frac{\partial E_{y}}{\partial t}=-\frac{\partial H_{z}}{\partial x} \quad, \quad \frac{\partial E_{x}}{\partial t}=\frac{\partial H_{z}}{\partial y}
\end{array}
$$

2. Introduce damping term $\sigma(x)(\sigma(x)=0$ for $x<0)$ in all equations which contain x-derivatives:

$$
\begin{aligned}
& \frac{\partial H_{z x}}{\partial t}+\sigma(x) H_{z x}=-\frac{\partial E_{y}}{\partial x} \quad, \quad \frac{\partial H_{z y}}{\partial t}=\frac{\partial E_{x}}{\partial y} \\
& \frac{\partial E_{y}}{\partial t}+\sigma(x) E_{y}=-\frac{\partial H_{z}}{\partial x} \quad, \quad \frac{\partial E_{x}}{\partial t}=\frac{\partial H_{z}}{\partial y}
\end{aligned}
$$

Bérenger PML for cart. coords II

3. In time harmonic regime,

$$
E_{i}(x, y, t)=\hat{E}_{i}(x, y) \exp (-i \omega t), \quad H_{z i}(x, y, t)=\hat{H}_{z i}(x, y) \exp (-i \omega t), i=x, y,
$$

the PML equations can be written as:

$$
\begin{aligned}
& -i \omega \hat{H}_{z}=\frac{\partial \hat{E}_{x}}{\partial y}-\frac{1}{1+i \sigma / \omega} \frac{\partial \hat{E}_{y}}{\partial x}, \\
& -i \omega \hat{E}_{y}=-\frac{1}{1+i \sigma / \omega} \frac{\partial \hat{H}_{z}}{\partial x}, \quad-i \omega \hat{E}_{x}=\frac{\partial \hat{H}_{z}}{\partial y}
\end{aligned}
$$

Change of variables technique

1. Start again in time harmonic regime, but don't split fields:

$$
E_{i}(x, y, t)=\hat{E}_{i}(x, y) \exp (-i \omega t), \quad H_{z}(x, y, t)=\hat{H}_{z}(x, y) \exp (-i \omega t), i=x, y
$$

2. In frequency domain, the Maxwell equations become:

$$
\begin{aligned}
& -i \omega \hat{H}_{z}=\frac{\partial \hat{E}_{x}}{\partial y}-\frac{\partial \hat{E}_{y}}{\partial x} \\
& -i \omega \hat{E}_{y}=-\frac{\partial \hat{H}_{z}}{\partial x}, \quad-i \omega \hat{E}_{x}=\frac{\partial \hat{H}_{z}}{\partial y}
\end{aligned}
$$

3. Change of variables: $x \rightarrow x^{\prime}=x+\frac{i}{\omega} \int_{0}^{x} \sigma(s) d s$

Change of variables technique II

If we use the chain rule to replace x^{\prime} by x, we get:

$$
\begin{aligned}
-i \omega \hat{H}_{z} & =\frac{\partial \hat{E}_{x}}{\partial y}-\frac{1}{1+i \sigma / \omega} \frac{\partial \hat{E}_{y}}{\partial x}, \\
-i \omega \hat{E}_{y} & =-\frac{1}{1+i \sigma / \omega} \frac{\partial \hat{H}_{z}}{\partial x}, \quad-i \omega \hat{E}_{x}=\frac{\partial \hat{H}_{z}}{\partial y}
\end{aligned}
$$

This is exactly the Bérenger PML in the frequency domain: Both approaches are equivalent!
Practical computation: truncate PML. We impose Dirichlet BC:

$$
\hat{E}_{y}(x=\delta, y, t)=0 \quad \Longrightarrow \quad R=e^{-2 i k_{x} \int_{0}^{\delta}(1+i \sigma(s) / \omega) d s}
$$

Note: Pick σ large to minimize R (if $k_{x} \in \mathbb{R}$).

PML for curvilinear coordinates

Do Bérenger's and the complex change of variables approach also result in equivalent PMLs for non-Cartesian coordinate system? Maxwell's equations in polar coordinates (ρ, θ) :

$$
\begin{aligned}
\frac{\partial H_{z}}{\partial t} & =\frac{1}{\rho}\left(\frac{\partial E_{\rho}}{\partial \theta}-\frac{\partial}{\partial \rho}\left(\rho E_{\theta}\right)\right) \\
\frac{\partial E_{\rho}}{\partial t} & =\frac{1}{\rho} \frac{\partial H_{z}}{\partial \theta}, \quad \frac{\partial E_{\theta}}{\partial t}=-\frac{\partial H_{z}}{\partial \rho}
\end{aligned}
$$

Assume the layer starts at $\rho=a$, so $\sigma(\rho)>0$ for $\rho>a$ and 0 otherwise.

Change of variables for polar coords

Start in the frequency domain. Let $\rho^{\prime}=\rho+\frac{i}{\omega} \int_{a}^{\rho} \sigma(s) d s$ and introduce

$$
d(\rho)=1+i \frac{\sigma(\rho)}{\omega} \quad \text { and } \quad \bar{d}(\rho)=1+i \frac{1}{\rho \omega} \int_{a}^{\rho} \sigma(s) d s
$$

such that $\rho^{\prime}=\rho \bar{d}$ and $\frac{d \rho^{\prime}}{d \rho}=d$. We thus have in freq. domain:

$$
\begin{aligned}
& -i \omega H_{z}=\frac{1}{\bar{d} \rho}\left(\frac{\partial E_{\rho}}{\partial \theta}-\frac{1}{d} \frac{\partial}{\partial \rho}\left(\bar{d} \rho E_{\theta}\right)\right) \\
& -i \omega E_{\rho}=\frac{1}{\bar{d} \rho} \frac{\partial H_{z}}{\partial \theta}, \quad-i \omega E_{\theta}=-\frac{1}{d} \frac{\partial H_{z}}{\partial \rho}
\end{aligned}
$$

Note: $\frac{1}{d} \frac{\partial}{\partial \rho}=\frac{\partial}{\partial \rho^{\prime}}=\frac{\partial}{\partial(d \rho)}$

Change of variables for polar coords II

Using $\tilde{E}_{\rho}=d E_{\rho}$ and $\tilde{E}_{\theta}=\bar{d} E_{\theta}$ we get the traditional Helmholtz equations:

$$
\begin{aligned}
& -i \omega d \bar{d} H_{z}=\frac{1}{\rho}\left(\frac{\partial \tilde{E}_{\rho}}{\partial \theta}-\frac{\partial}{\partial \rho}\left(\rho \tilde{E}_{\theta}\right)\right) \\
& -i \omega \frac{\bar{d}}{d} \tilde{E}_{\rho}=\frac{1}{\rho} \frac{\partial H_{z}}{\partial \theta}, \quad-i \omega \frac{d}{\bar{d}} \tilde{E}_{\theta}=-\frac{\partial H_{z}}{\partial \rho}
\end{aligned}
$$

We can return to time domain by introducing $E_{\rho}^{*}=1 / d \tilde{E}_{\rho}, E_{\theta}^{*}=1 / \bar{d} \tilde{E}_{\theta}$, $H_{z}^{*}=\bar{d} H_{z}$ and $\bar{\sigma}(\rho)=\frac{1}{\rho} \int_{a}^{\rho} \sigma(s) d s:$

$$
\begin{gathered}
\frac{\partial H_{z}^{*}}{\partial t}+\sigma H_{z}^{*}=\frac{1}{\rho}\left(\frac{\partial \tilde{E}_{\rho}}{\partial \theta}-\frac{\partial}{\partial \rho}\left(\rho \tilde{E}_{\theta}\right)\right), \quad \frac{\partial E_{\rho}^{*}}{\partial t}+\bar{\sigma} E_{\rho}^{*}=\frac{1}{\rho} \frac{\partial H_{z}}{\partial \theta}, \quad \frac{\partial E_{\theta}^{*}}{\partial t}+\sigma E_{\theta}^{*}=-\frac{\partial H_{z}}{\partial \rho} \\
\frac{\partial \tilde{E}_{\rho}}{\partial t}=\frac{\partial E_{\rho}^{*}}{\partial t}+\sigma E_{\rho}^{*}, \quad \frac{\partial \tilde{E}_{\theta}}{\partial t}=\frac{\partial E_{\theta}^{*}}{\partial t}+\bar{\sigma} E_{\theta}^{*}, \quad \frac{\partial H_{z}}{\partial t}+\bar{\sigma} H_{z}=\frac{\partial H_{z}^{*}}{\partial t}
\end{gathered}
$$

Comparison to Bérenger's PML

In order to compare the two constructions, assume that $\frac{\partial H_{z}}{\partial \theta}=0$ and choose $E_{\rho}=0$.

$$
\begin{gathered}
\Longrightarrow \frac{\partial H_{z}^{*}}{\partial t}+\sigma H_{z}^{*}=-\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \tilde{E}_{\theta}\right), \quad \frac{\partial E_{\theta}^{*}}{\partial t}+\sigma E_{\theta}^{*}=-\frac{\partial H_{z}}{\partial \rho} \\
\frac{\partial \tilde{E}_{\theta}}{\partial t}=\frac{\partial E_{\theta}^{*}}{\partial t}+\bar{\sigma} E_{\theta}^{*}, \quad \frac{\partial H_{z}}{\partial t}+\bar{\sigma} H_{z}=\frac{\partial H_{z}^{*}}{\partial t}
\end{gathered}
$$

Bérenger's construction would yield:

$$
\frac{\partial H_{z}}{\partial t}+\sigma H_{z}=-\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho E_{\theta}\right), \quad \frac{\partial E_{\theta}}{\partial t}+\sigma E_{\theta}=-\frac{\partial H_{z}}{\partial \rho}
$$

They are clearly different!
Question: How do they perform qualitatively?

Comparison to Bérenger's PML II

Think of the following setup:

We take the source to be on the unit disc,

$$
\text { At } \rho=1: \quad E_{\theta}=\sin (2 \pi t) \text { for } 0 \leq t \leq 1 \text { and } 0 \text { otherwise, }
$$

and choose a quadratic ρ-dependance for σ :

$$
\sigma(\rho)=\sigma_{0}(\rho-a)^{2} / \delta^{2}, \text { for } \rho \geq a
$$

Comparison to Bérenger’s PML III

\section*{Parameters:
 | $\mathrm{N}=100$ | (number of points) |
| :--- | :--- |
| $\mathrm{n}_{1}=10$ | (number of points in PML) |
| $\mathrm{h}=(\mathrm{a}-1) / \mathrm{N}$ | (spacing) |
| $\delta=\mathrm{n}_{1} \mathrm{~h}$ | (layer thickness) |
| $\sigma(\rho)=\sigma_{0}(\rho-a)^{2} / \delta^{2}$ | |
| All plots show H_{z} at $\mathrm{x}=\mathrm{h} / 2$ (ie. close to the
 scatterer) | |}

Conclusions

- The change of variables PML gives a much more accurate (discrete) absorbing layer than Bérenger's construction in polar coordinates.
- Unlike Bérenger's PML, the change of variables technique allows tuning of PMLs situated very close to the scatterer, yet producing very good absorption.
- The quality of our PML still depends on a number of parameters (including discretization params) which need to be chosen wisely.
\Longrightarrow Is there a way to quantify the effects of discretization?
Furtermore, can we derive optimal PML parameters from there?

Effects of discretization

For simplicity, we restrict ourselves to the planar, two-dimensional case. Starting from Bérenger's construction, we avoid the split fields by defining:

$$
\tilde{E}_{x}=(1+i \sigma / \omega) \hat{E}_{x}, \quad \tilde{E}_{y}=\hat{E}_{y}, \quad \tilde{H}_{z}=\hat{H}_{z}
$$

Now we have again a traditional curl-curl structure:

$$
\begin{aligned}
& -i \omega(1-i \sigma / \omega) \tilde{H}_{z}=\frac{\partial \tilde{E}_{x}}{\partial y}-\frac{\partial \tilde{E}_{y}}{\partial x} \\
& -i \omega(1-i \sigma / \omega) \tilde{E}_{y}=-\frac{\partial \tilde{H}_{z}}{\partial x}, \quad-\frac{i \omega}{1+i \sigma / \omega} \tilde{E}_{x}=\frac{\partial \tilde{H}_{z}}{\partial y}
\end{aligned}
$$

Discretization of planar PML

We use
a standard Yee scheme and let $\sigma(x)$ be piecewise constant with jumps at $x=l h$, $l=0,1,2, \ldots$. We denote by $\sigma_{l+1 / 2}$ the value of σ in the interval $(l h,(l+1) h)$.

We then arrive at the following discretized equations:

$$
\begin{aligned}
& -i \frac{\omega}{\gamma_{l+1 / 2}} \tilde{E}_{l+1 / 2, j}=\frac{\tilde{H}_{l+1 / 2, j+1 / 2}-\tilde{H}_{l+1 / 2, j-1 / 2}}{h} \\
& -i \omega \frac{\gamma_{l+1 / 2}+\gamma_{l-1 / 2}}{2} \tilde{E}_{l, j+1 / 2}=-\frac{\tilde{H}_{l+1 / 2, j+1 / 2}-\tilde{H}_{l-1 / 2, j+1 / 2}}{h} \\
& -i \omega \gamma_{l+1 / 2} \tilde{H}_{l+1 / 2, j+1 / 2}=\frac{\tilde{E}_{l+1 / 2, j+1}-\tilde{E}_{l+1 / 2, j}}{h}-\frac{\tilde{E}_{l+1, j+1 / 2}-\tilde{E}_{l, j+1 / 2}}{h}
\end{aligned}
$$

with $\gamma_{l+1 / 2}=1+i \sigma_{l+1 / 2} / \omega$.

Discretization of planar PML II

To make life easier: Assume $\tilde{H}_{l+1 / 2, j+1 / 2}=e^{i \kappa_{2}(j+1 / 2) h} \tilde{H}_{l+1 / 2}$ and eliminate the various \tilde{E} 's to get an expression for \tilde{H} only:

$$
\begin{aligned}
-h^{2} \omega^{2} \lambda \gamma_{l+1 / 2} \tilde{H}_{l+1 / 2}= & \frac{2}{\gamma_{l+3 / 2}+\gamma_{l+1 / 2}}\left(\tilde{H}_{l+3 / 2}-\tilde{H}_{l+1 / 2}\right) \\
& -\frac{2}{\gamma_{l+1 / 2}+\gamma_{l-1 / 2}}\left(\tilde{H}_{l+1 / 2}-\tilde{H}_{l-1 / 2}\right)
\end{aligned}
$$

where we defi ned $\lambda=1-\frac{4}{h^{2} \omega^{2}} \sin ^{2}\left(\kappa_{2} h / 2\right)$.
To fi nd the reflection coeffi ciendue to the discretization, we'll use $\sigma=$ const, thus $\gamma=\gamma_{l+1 / 2}=$ const and use the plain wave ansatz

$$
\begin{aligned}
\tilde{H}_{l+1 / 2} & =e^{i \kappa_{1} h(l+1 / 2)}+R e^{-i \kappa_{1} h(l+1 / 2)} & & \text { for } l \leq-1 \quad(x<0) \\
\tilde{H}_{l+1 / 2} & =T e^{i \kappa_{1}^{\sigma} h(l+1 / 2)} & & \text { for } l \geq 0 \text { (inside PML) }
\end{aligned}
$$

Discretization of planar PML III

Using this ansatz to solve the discrete \tilde{H} equations at the interface (corresponding to $x=0$), we can derive an expression for the reflection coeffcient R for an infinite layer:

$$
R=\frac{1}{16}\left(\omega^{2}-\kappa_{2}^{2}\right) \frac{\sigma(\sigma-2 \omega i)}{\omega^{2}} h^{2}+O\left(h^{4}\right)
$$

Discretizing the PML has introduced a reflection from the interface at $x=0$.

The layer is thus no longer perfectly matched. As R is of magnitude $\sigma^{2} h^{2}$, we cannot choose σ arbitrarily large anymore.

Before dealing with an optimal choice of σ, we will consider the case of a finite layer.

Refl. coeff. for fi nite, discrete PMLs

Suppose a PML thickness of $\delta=n_{l} \cdot h$. The discretized equations at $l=n_{l}-1$ will require the value of the boundary data. If we choose Dirichlet BC, we can set $\tilde{E}_{n_{l}, j+1 / 2}=0, \forall j$. Remember:

$$
\begin{aligned}
-i \omega \gamma \tilde{E}_{n_{l}, j+1 / 2} & =-\frac{\tilde{H}_{n_{l}+1 / 2, j+1 / 2}-\tilde{H}_{n_{l}-1 / 2, j+1 / 2}}{h} \\
-h^{2} \omega^{2} \lambda \gamma \tilde{H}_{l+1 / 2} & =\frac{1}{\gamma}\left(\tilde{H}_{l+3 / 2}-\tilde{H}_{l+1 / 2}\right)-\frac{1}{\gamma}\left(\tilde{H}_{l+1 / 2}-\tilde{H}_{l-1 / 2}\right)
\end{aligned}
$$

Given $\tilde{H}_{-3 / 2}$, we can therefore compute

$$
\vec{H}=\left(\tilde{H}_{-1 / 2}, \tilde{H}_{1 / 2}, \ldots, \tilde{H}_{n_{l}-1 / 2}\right)^{\top}
$$

Refl. coeff. for fi nite, discrete PMLs II

It is easier to calculate \vec{H} in terms of the matrix equation
$M \vec{H}=-\tilde{H}_{-3 / 2} \vec{F}$
where $\vec{F}=(1,0, \cdots, 0)^{\top}$ and $M=\left(\begin{array}{lllll}c_{-1 / 2} & d_{1 / 2} & 0 & \ldots & \\ d_{1 / 2} & c_{1 / 2} & d_{3 / 2} & 0 & \cdots \\ 0 & d_{3 / 2} & c_{3 / 2} & d_{5 / 2} & \cdots \\ & & \ddots & \ddots & \ddots \\ & \cdots & 0 & d_{n_{l}-3 / 2} & c_{n_{l}-1 / 2}\end{array}\right)$
with

$$
\begin{aligned}
c_{j+1 / 2} & =h^{2} \omega^{2} \lambda \gamma_{j+1 / 2}-\frac{2}{\gamma_{j+3 / 2}+\gamma_{j+1 / 2}}-\frac{2}{\gamma_{j+1 / 2}+\gamma_{j-1 / 2}}, \quad-1 \leq j \leq n_{l}-2 \\
d_{j+1 / 2} & =2 /\left(\gamma_{j+1 / 2}+\gamma_{j-1 / 2}\right), \quad 0 \leq j \leq n_{l}-1 \\
c_{n_{l}-1 / 2} & =h^{2} \omega^{2} \lambda \gamma_{n_{l}-1 / 2}-2 /\left(\gamma_{n_{l}-1 / 2}+\gamma_{n_{l}-3 / 2}\right)
\end{aligned}
$$

Refl. coeff. for fi nite, discrete PMLs III

An expression for the reflection coefficient is then given by

$$
R_{d i s}=-\frac{1+F^{\top} \cdot M^{-1} \cdot F \cdot e^{-i \kappa_{1} h}}{1+F^{\top} \cdot M^{-1} \cdot F \cdot e^{i \kappa_{1} h}}
$$

Numerical results: We choose

$$
\begin{aligned}
\delta=n_{l} h & =2 \pi / \omega & & \text { (layer thickness }=1 \text { wavelength) } \\
\sigma(x) & =\sigma_{0}(x / \delta)^{2}, \text { for } x>0 & & \text { (parabolic law) } \\
\sigma_{0} & =\frac{3}{2 \delta} \log \left(\frac{1}{R_{0}}\right) & & \\
N & =2 \pi /(\omega h) & & \text { (number of points per wavelength) }
\end{aligned}
$$

The choice of σ_{0} ensures that the reflection coefficient for the continuous model at normal incidence is just given by R_{0} (Remember: $R_{\text {cont }}=e^{-2 i k_{x} \int_{0}^{\delta}(1+i \sigma(s) / \omega) d s}$ for continuous models).

Numerical results I

Angle of incidence: $\pi / 4$

Numerical results II

Conclusions

- The numerical reflection coeffi cient convergesto the derived value for the continuous model when N is increased.
- The convergence appears to be slower for smaller R_{0} (ie. for larger σ_{0}).
- For fi xed N, the largest value of σ_{0} does not necessarily result in the smallest reflection coeffi cient.

Question: Can we choose σ in a better way in order to optimize the effects introduced by discretization?

Optimization of the cart. PML

For practical reasons: For a given N (number of points per wavelength) and n_{l} (number of points in the layer), what is the best σ to use?
\Longrightarrow Introduce (discrete) $\vec{\sigma}$:

$$
\vec{\sigma}=\left(h \sigma_{1 / 2}, h \sigma_{3 / 2}, \ldots, h \sigma_{n_{l}-1 / 2}\right)
$$

$\vec{\sigma}$ is then found by minimizing R for all angles of incidence. We can - as an example - emphasize normal incidence by a $\cos \theta$ weight, thus minimize

$$
\frac{1}{100} \sum_{q=1}^{100} \cos \left(\theta_{q}\right)|R(\theta, N, \vec{\sigma})|^{2},
$$

where $\theta_{q}=\pi(q-1) / 200$.

Numerical results

- Optimal σ profi le is not quadraticanymore.
- The optimized σ improves the average reflection coeffi cient.
- The improvement is best for non-normal incidence.

Effects of boundary conditions

We have already seen: Dirichlet BCs lead to additional reflections. Idea: Use absorbing boundary conditions (ABC) at the end of the PML layer:

$$
\tilde{E}_{y}=\tilde{H}_{z} \quad \text { on } x=\delta \quad \text { (Silver-Müller radiation cond.) }
$$

\Rightarrow It will clearly influence $\tilde{H}_{n_{l}-1 / 2}$.
Start with the Maxwell equation at the layer end $x=\delta=n_{l} h$:

$$
(-i \omega+\sigma(x)) \tilde{E}_{y}=-\frac{\partial \tilde{H}_{z}}{\partial x}
$$

Using a special FD scheme, it can be discretized in the following form

$$
-i \omega \gamma_{n_{l}-1 / 2} \tilde{E}_{n_{l}, j+1 / 2}=-\frac{\tilde{H}_{n_{l}, j+1 / 2}-\tilde{H}_{n_{l}-1 / 2, j+1 / 2}}{h / 2} .
$$

Effects of boundary conditions II

But, as imposed by our boundary conditions, $\tilde{H}_{n_{l}, j+1 / 2}=\tilde{E}_{n_{l}, j+1 / 2}$, this simplifi es to:

$$
-i \omega h\left(\frac{\gamma_{n_{l}-1 / 2}}{2}+\frac{i}{\omega h}\right) \tilde{E}_{n_{l}, j+1 / 2}=\tilde{H}_{n_{l}-1 / 2, j+1 / 2}
$$

We can now proceed as with Dirichlet BCs: Split away the j part and defi ne $\vec{H}=\left(\tilde{H}_{-1 / 2}, \cdots, \tilde{H}_{n_{l}-1 / 2}\right)$ and M such that $M \vec{H}=-\tilde{H}_{-3 / 2} \vec{F}$.

Due to our new boundary conditions, only the last line in M will change, corresponding to the different expression for $\tilde{H}_{n_{l}-1 / 2}$. The reflection coeffi cient, however, is still given by the same formula derived earlier:

$$
R=-\frac{1+F^{\top} \cdot M^{-1} \cdot F \cdot e^{-i \kappa_{1} h}}{1+F^{\top} \cdot M^{-1} \cdot F \cdot e^{i \kappa_{1} h}}
$$

Numerical results

Angle of incidence: $\pi / 4$

Numerical results II

Conclusions

- Using ABC's the reflection coeffi cient converges to zero with higher accuracy. This is what we expect, since our ABC's are perfect, at least for normal wave incidence.
- For parabolic σ, the ABC's improve the reflection for waves close to normal incidence.
- Not shown: Optimizing σ for ABC's does not result in a large improvement, compared to the parabolic case.

Summarized: Absorbing boundary conditions can be considered an enhancement for parabolic σ, especially for normal incidence.

To come to an end...

We have seen that

- PMLs can be generalized to curvilinear coordinates using a complex change of variables, which is superior to Bérenger's construction.
- the effects of discretization can be quantifi edand we have derived an expression for the reflection coeffi cient for both, the infi nite and the fi nite layer.
- in order to improve the (discrete, fi nite) layer, we can optimize σ. However, the parabolic profi le is almost optimal.
- using ABC's is worth while for parabolic σ profi les. An optimized profi le, however, will then not lead to great improvement.

Questions?

