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PML construction - Overview

We have already seen that a PML can be understood in two ways:

Split the magnetic field and introduce a damping term σ

(Bérenger’s approach)

Perform a complex change of variables

We will see:

1. cartesian case: both are equivalent

2. cylindrical coordinates: inequivalent, efficiency differs
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Planar PML for cartesian coords

Consider a TE wave (Ez = 0) in free space (ε0 = µ0 = c = 1). The

two-dimensional Maxwell equations then reduce to:

∂Hz

∂t
=

∂Ex

∂y
−

∂Ey

∂x

∂Ey

∂t
= −

∂Hz

∂x
,

∂Ex

∂t
=

∂Hz

∂y

Suppose we’d like to construct a 2D PML for x > 0:

xx=0

y

PML

z

E

E

x

y

Hz
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Bérenger PML for cart. coords

Bérenger:

1. Split H field: Hz = Hzx + Hzy such that the MW equations can

be written as:

∂Hzx

∂t
= −

∂Ey

∂x
,

∂Hzy

∂t
=

∂Ex

∂y

∂Ey

∂t
= −

∂Hz

∂x
,

∂Ex

∂t
=

∂Hz

∂y

2. Introduce damping term σ(x) (σ(x) = 0 for x < 0) in all

equations which contain x-derivatives:

∂Hzx

∂t
+ σ(x)Hzx = −

∂Ey

∂x
,

∂Hzy

∂t
=

∂Ex

∂y

∂Ey

∂t
+ σ(x)Ey = −

∂Hz

∂x
,

∂Ex

∂t
=

∂Hz

∂y
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Bérenger PML for cart. coords II

3. In time harmonic regime,

Ei(x, y, t) = Êi(x, y) exp(−iωt), Hzi(x, y, t) = Ĥzi(x, y) exp(−iωt), i = x, y ,

the PML equations can be written as:

−iωĤz =
∂Êx

∂y
−

1

1 + iσ/ω

∂Êy

∂x
,

−iωÊy = −
1

1 + iσ/ω

∂Ĥz

∂x
, −iωÊx =

∂Ĥz

∂y
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Change of variables technique

1. Start again in time harmonic regime, but don’t split fields:

Ei(x, y, t) = Êi(x, y) exp(−iωt), Hz(x, y, t) = Ĥz(x, y) exp(−iωt), i = x, y

2. In frequency domain, the Maxwell equations become:

−iωĤz =
∂Êx

∂y
−

∂Êy

∂x
,

−iωÊy = −
∂Ĥz

∂x
, −iωÊx =

∂Ĥz

∂y

3. Change of variables: x → x′ = x + i
ω

∫ x
0 σ(s)ds
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Change of variables technique II

If we use the chain rule to replace x′ by x, we get:

−iωĤz =
∂Êx

∂y
−

1

1 + iσ/ω

∂Êy

∂x
,

−iωÊy = −
1

1 + iσ/ω

∂Ĥz

∂x
, −iωÊx =

∂Ĥz

∂y

This is exactly the Bérenger PML in the frequency domain: Both
approaches are equivalent!
Practical computation: truncate PML. We impose Dirichlet BC:

Êy(x = δ, y, t) = 0 =⇒ R = e−2ikx
R δ
0

(1+iσ(s)/ω)ds

Note: Pick σ large to minimize R (if kx ∈ R).
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PML for curvilinear coordinates

Do Bérenger’s and the complex change of variables approach also

result in equivalent PMLs for non-Cartesian coordinate system?

Maxwell’s equations in polar coordinates (ρ, θ):

∂Hz

∂t
=

1

ρ

(

∂Eρ

∂θ
−

∂

∂ρ
(ρEθ)

)

∂Eρ

∂t
=

1

ρ

∂Hz

∂θ
,

∂Eθ

∂t
= −

∂Hz

∂ρ

Assume the layer starts at ρ = a, so σ(ρ) > 0 for ρ > a and 0 otherwise.

PML

ρ=a

z eρ

eθ
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Change of variables for polar coords

Start in the frequency domain. Let ρ′ = ρ + i
ω

∫ ρ

a
σ(s)ds and introduce

d(ρ) = 1 + i
σ(ρ)

ω
and d̄(ρ) = 1 + i

1

ρω

∫ ρ

a

σ(s)ds

such that ρ′ = ρd̄ and dρ′

dρ = d. We thus have in freq. domain:

−iωHz =
1

d̄ρ

(

∂Eρ

∂θ
−

1

d

∂

∂ρ
(d̄ρEθ)

)

−iωEρ =
1

d̄ρ

∂Hz

∂θ
, −iωEθ = −

1

d

∂Hz

∂ρ

Note: 1
d

∂
∂ρ = ∂

∂ρ′
= ∂

∂(d̄ρ)
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Change of variables for polar coords II

Using Ẽρ = dEρ and Ẽθ = d̄Eθ we get the traditional Helmholtz equations:

−iωdd̄Hz =
1

ρ

(

∂Ẽρ

∂θ
−

∂

∂ρ
(ρẼθ)

)

−iω
d̄

d
Ẽρ =

1

ρ

∂Hz

∂θ
, −iω

d

d̄
Ẽθ = −

∂Hz

∂ρ

We can return to time domain by introducing E∗

ρ = 1/dẼρ, E∗

θ = 1/d̄Ẽθ,
H∗

z = d̄Hz and σ̄(ρ) = 1
ρ

∫ ρ

a
σ(s)ds:

∂H∗

z

∂t
+σH∗

z =
1

ρ

 

∂Ẽρ

∂θ
−

∂

∂ρ
(ρẼθ)

!

,
∂E∗

ρ

∂t
+σ̄E∗

ρ =
1

ρ

∂Hz

∂θ
,

∂E∗

θ

∂t
+σE∗

θ = −
∂Hz

∂ρ

∂Ẽρ

∂t
=

∂E∗

ρ

∂t
+ σE∗

ρ ,
∂Ẽθ

∂t
=

∂E∗

θ

∂t
+ σ̄E∗

θ ,
∂Hz

∂t
+ σ̄Hz =

∂H∗

z

∂t
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Comparison to Bérenger’s PML

In order to compare the two constructions, assume that ∂Hz

∂θ = 0 and
choose Eρ = 0.

=⇒
∂H∗

z

∂t
+ σH∗

z = −
1

ρ

∂

∂ρ
(ρẼθ),

∂E∗

θ

∂t
+ σE∗

θ = −
∂Hz

∂ρ

∂Ẽθ

∂t
=

∂E∗

θ

∂t
+ σ̄E∗

θ ,
∂Hz

∂t
+ σ̄Hz =

∂H∗

z

∂t

Bérenger’s construction would yield:

∂Hz

∂t
+ σHz = −

1

ρ

∂

∂ρ
(ρEθ),

∂Eθ

∂t
+ σEθ = −

∂Hz

∂ρ

They are clearly different!

Question: How do they perform qualitatively?
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Comparison to Bérenger’s PML II

Think of the following setup:

PML

1

a

δ

We take the source to be on the unit disc,

At ρ = 1: Eθ = sin(2πt) for 0 ≤ t ≤ 1 and 0 otherwise,

and choose a quadratic ρ-dependance for σ:

σ(ρ) = σ0(ρ − a)2/δ2, for ρ ≥ a
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Comparison to Bérenger’s PML III

Bérenger

Change of variables

Bérenger

Change of variables
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σ(ρ) = σ  (ρ−a) / δ

l

l

All plots show H   at x = h/2 (ie. close to the 

scatterer)
z

0
2 2
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Conclusions

The change of variables PML gives a much more
accurate (discrete) absorbing layer than Bérenger’s
construction in polar coordinates.

Unlike Bérenger’s PML, the change of variables
technique allows tuning of PMLs situated very close to
the scatterer, yet producing very good absorption.

The quality of our PML still depends on a number of
parameters (including discretization params) which
need to be chosen wisely.

=⇒ Is there a way to quantify the effects of discretization?
Furtermore, can we derive optimal PML parameters from
there?
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Effects of discretization

For simplicity, we restrict ourselves to the planar, two-dimensional

case. Starting from Bérenger’s construction, we avoid the split

fields by defining:

Ẽx = (1 + iσ/ω)Êx, Ẽy = Êy, H̃z = Ĥz

Now we have again a traditional curl-curl structure:

−iω(1 − iσ/ω)H̃z =
∂Ẽx

∂y
−

∂Ẽy

∂x

−iω(1 − iσ/ω)Ẽy = −
∂H̃z

∂x
, −

iω

1 + iσ/ω
Ẽx =

∂H̃z

∂y
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Discretization of planar PML

We use

H
~

l-1/2, j+1/2 H
~

l+1/2, j+1/2

H
~

l+1/2, j-1/2

E
~

l-1, j+1/2

E
~

l-1/2, j E
~

l+1/2, j

E
~

l+1/2, j-1

E
~

l+1, j-1/2

E
~

l+1, j+1/2

E
~

l+1/2, j+1

E
~

l, j+1/2

l=0 l-1 l l+1 l=nl

j-1

j

j+1a standard Yee scheme and let σ(x) be
piecewise constant with jumps at x = lh,
l = 0, 1, 2, . . .. We denote by σl+1/2

the value of σ in the interval (lh, (l + 1)h).

We then arrive
at the following discretized equations:

−i
ω

γl+1/2
Ẽl+1/2,j =

H̃l+1/2,j+1/2 − H̃l+1/2,j−1/2

h

−iω
γl+1/2 + γl−1/2

2
Ẽl,j+1/2 = −

H̃l+1/2,j+1/2 − H̃l−1/2,j+1/2

h

−iωγl+1/2H̃l+1/2,j+1/2 =
Ẽl+1/2,j+1 − Ẽl+1/2,j

h
−

Ẽl+1,j+1/2 − Ẽl,j+1/2

h

with γl+1/2 = 1 + iσl+1/2/ω.
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Discretization of planar PML II

To make life easier: Assume H̃l+1/2,j+1/2 = eiκ2(j+1/2)hH̃l+1/2 and
eliminate the various Ẽ’s to get an expression for H̃ only:

−h2ω2λγl+1/2H̃l+1/2 =
2

γl+3/2 + γl+1/2
(H̃l+3/2 − H̃l+1/2)

−
2

γl+1/2 + γl−1/2
(H̃l+1/2 − H̃l−1/2)

where we defined λ = 1 − 4
h2ω2 sin2(κ2h/2).

To find the reflection coefficientdue to the discretization, we’ll use
σ = const, thus γ = γl+1/2 = const and use the plain wave ansatz

H̃l+1/2 = eiκ1h(l+1/2) + Re−iκ1h(l+1/2) for l ≤ −1 (x < 0)

H̃l+1/2 = Teiκσ

1
h(l+1/2) for l ≥ 0 (inside PML)
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Discretization of planar PML III

Using this ansatz to solve the discrete H̃ equations at the interface

(corresponding to x = 0), we can derive an expression for the

reflection coeffcient R for an infinite layer:

R =
1

16
(ω2 − κ2

2)
σ(σ − 2ωi)

ω2
h2 + O(h4)

Discretizing the PML has introduced a reflection from the
interface at x = 0.

The layer is thus no longer perfectly matched . As R is of
magnitude σ2h2, we cannot choose σ arbitrarily large anymore.

Before dealing with an optimal choice of σ, we will consider the
case of a finite layer.
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Refl. coeff. for finite, discrete PMLs

Suppose a PML thickness of δ = nl · h. The discretized equations at

l = nl − 1 will require the value of the boundary data. If we choose

Dirichlet BC, we can set Ẽnl,j+1/2 = 0, ∀j. Remember:

−iωγẼnl,j+1/2 = −
H̃nl+1/2,j+1/2 − H̃nl−1/2,j+1/2

h
,

−h2ω2λγH̃l+1/2 =
1

γ
(H̃l+3/2 − H̃l+1/2) −

1

γ
(H̃l+1/2 − H̃l−1/2)

Given H̃−3/2, we can therefore compute

~H = (H̃−1/2, H̃1/2, . . . , H̃nl−1/2)
>
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Refl. coeff. for finite, discrete PMLs II

It is easier to calculate ~H in terms of the matrix equation

M ~H = −H̃−3/2
~F

where ~F = (1, 0, · · · , 0)> and M =

0

B

B

B

B

B

B

B

B

B

@

c
−1/2 d1/2 0 · · ·

d1/2 c1/2 d3/2 0 · · ·

0 d3/2 c3/2 d5/2 · · ·

. . .
. . .

. . .

· · · 0 dnl−3/2 cnl−1/2

1

C

C

C

C

C

C

C

C

C

A

with

cj+1/2 = h2ω2λγj+1/2 −
2

γj+3/2 + γj+1/2
−

2

γj+1/2 + γj−1/2
, −1 ≤ j ≤ nl − 2

dj+1/2 = 2/(γj+1/2 + γj−1/2), 0 ≤ j ≤ nl − 1,

cnl−1/2 = h2ω2λγnl−1/2 − 2/(γnl−1/2 + γnl−3/2)
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Refl. coeff. for finite, discrete PMLs III

An expression for the reflection coefficient is then given by

Rdis = −
1 + F> · M−1 · F · e−iκ1h

1 + F> · M−1 · F · eiκ1h

Numerical results: We choose

δ = nlh = 2π/ω (layer thickness = 1 wavelength)

σ(x) = σ0(x/δ)2, for x > 0 (parabolic law)

σ0 =
3

2δ
log(

1

R0
)

N = 2π/(ωh) (number of points per wavelength)

The choice of σ0 ensures that the reflection coefficient for the
continuous model at normal incidence is just given by R0

(Remember: Rcont = e−2ikx
R δ
0

(1+iσ(s)/ω)ds for continuous models).
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Numerical results I
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Numerical results II
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Conclusions

The numerical reflection coefficient convergesto the
derived value for the continuous model when N is
increased.

The convergence appears to be slower for smaller R0

(ie. for larger σ0).

For fixed N, the largest value of σ0 does not necessarily
result in the smallest reflection coefficient.

Question: Can we choose σ in a better way in order to
optimize the effects introduced by discretization?
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Optimization of the cart. PML

For practical reasons: For a given N (number of points per wavelength)
and nl (number of points in the layer), what is the best σ to use?

=⇒ Introduce (discrete) ~σ:

~σ = (hσ1/2, hσ3/2, . . . , hσnl−1/2)

~σ is then found by minimizing R for all angles of incidence. We can - as an
example - emphasize normal incidence by a cos θ weight, thus minimize

1

100

100
∑

q=1

cos(θq)|R(θ, N, ~σ)|2,

where θq = π(q − 1)/200.
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Numerical results
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Optimal σ profile is not quadraticanymore.

The optimized σ improves the average reflection coefficient.

The improvement is best for non-normal incidence.
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Effects of boundary conditions

We have already seen: Dirichlet BCs lead to additional reflections.
Idea: Use absorbing boundary conditions (ABC) at the end of the PML
layer:

Ẽy = H̃z on x = δ (Silver-Müller radiation cond.)

⇒ It will clearly influence H̃nl−1/2.
Start with the Maxwell equation at the layer end x = δ = nlh:

(−iω + σ(x))Ẽy = −
∂H̃z

∂x

Using a special FD scheme, it can be discretized in the following form

−iωγnl−1/2Ẽnl,j+1/2 = −
H̃nl,j+1/2 − H̃nl−1/2,j+1/2

h/2
.
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Effects of boundary conditions II

But, as imposed by our boundary conditions, H̃nl,j+1/2 = Ẽnl,j+1/2, this
simplifies to:

−iωh

(

γnl−1/2

2
+

i

ωh

)

Ẽnl,j+1/2 = H̃nl−1/2,j+1/2

We can now proceed as with Dirichlet BCs: Split away the j part and
define ~H = (H̃−1/2, · · · , H̃nl−1/2) and M such that M ~H = −H̃−3/2

~F .

Due to our new boundary conditions, only the last line in M will change,
corresponding to the different expression for H̃nl−1/2. The reflection
coefficient, however, is still given by the same formula derived earlier:

R = −
1 + F> · M−1 · F · e−iκ1h

1 + F> · M−1 · F · eiκ1h
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Numerical results
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Numerical results II
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Conclusions

Using ABC’s the reflection coefficient converges to zero
with higher accuracy. This is what we expect, since our
ABC’s are perfect, at least for normal wave incidence.

For parabolic σ, the ABC’s improve the reflection for
waves close to normal incidence.

Not shown: Optimizing σ for ABC’s does not result in a
large improvement, compared to the parabolic case.

Summarized: Absorbing boundary conditions can be
considered an enhancement for parabolic σ, especially for
normal incidence.
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To come to an end...

We have seen that

PMLs can be generalized to curvilinear coordinates
using a complex change of variables, which is superior
to Bérenger’s construction.

the effects of discretization can be quantifiedand we
have derived an expression for the reflection coefficient
for both, the infinite and the finite layer.

in order to improve the (discrete, finite) layer, we can
optimize σ. However, the parabolic profile is almost
optimal.

using ABC’s is worth while for parabolic σ profiles. An
optimized profile, however, will then not lead to great
improvement.
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