Analysis of PML for the
Helmholtz equation



What’s the physical situation?
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Example

Let ) represent an infinite cylinder in R?. We consider
how the magnetic field H = H(x, t) is scattered by the cylin-
der.




We assume that the magnetic field is parallel to the axis of the
cylinder.




With further assumptions, the scattered magnetic field can be
written as

H = u(r,¢)e e,
e where (1, @) are the polar coordinates in the plane,
e w > () the angular frequency,

e e, the direction of the axis of the cylinder.

Mathematical analysis of the situation
e Mathematical description?

e How to describe ,the scattering™?



Answer (w.r.t. the Example)

For the amplitude v = u(r, ¢) we have to solve:
L (A+K)u=0inR?\ Q,

ou _
2. %‘89 = 9,

A

o+ — tku) = 0 uniformly in Z,

3. lim,_o r%(

where k% = w?egpo > 0 and
r=|z|and z =x/r, r#0.

the equation (3) is called the
,Sommerfeld radiation condition at infinity*.



Difficulties
Since (2 is bounded, R?\(2 is unbounded.
Solution: The PML - method.

Overview
1. Scattering BVP — .
2. Full-space Bérenger BVP — ¢ with uc |[p = s |p -
3. Truncated Bérenger BVP — u¢(p), bounded domain.
4. Main Theorem: ug(p) " u,, near Q.

5. Outline of the proof.



Part 1: The scattering BVP

1. (A +E)u=0in R?\Q
2. %‘39 =g c H71/2<8Q>
ou

3. lim, 7“1/2(0— — tku) = 0 uniformly in &

Note: (3) = u(r,p) — C) e+

Helmholtz PDE
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Existence Theorem

The scattering BVP has a wunique (weak) solution
H! (R*\Q), where

H (R\Q) = {u: ue H(Ba(0)\Q) for all R > 0
and wu satisfies the Sommerfeld radiation condition }.

This unique solution of the scattering problem is denoted
by U



Part 2: The Construction

We introduce a strictly convex set D C R?, such that
1.QC D,
2. D has a C?-boundary:.

Scatterer




Definition of h

Let © € R*\D. Then we define
e h(x) = dist(x,0D) > 0 and
e p(x) € OD such that h(z) = |x — p(x)|.
With z = p(x) + h(x) - n(x).

tangent




Definition of 7

Further, let 7 : [0,00) — [0,00) be a C*-function with:
e the derivative 7’ is strictly increasing,
o lim, . 7'(s) =00
o 7(0)=7(04+)=7"(0+) =0

—e-7(8)

7'(8) = limy_oe e~ 7"(s) = 0

o lim, . e
for all € > 0.




Definition of the function a

We define a function a : R? — R? by setting

0 ifxeD N
@) = { (h(z)) - n(z) if z € RAD

tangent




Definition of the stretching function F

We define the function F': R* — C? by setting

F(z) =x+1i-a(x).




Definition of [

F=FR)={2€C*; z=x+i-a(x),r € R?}




The fundamental solution of the Helmholtz equation
i 1
b(z,y) =1 Hy (k- |z —y))

is the fundamental solution for the Helmholtz equati-
on, l.e.

(A, + k)P (x,y) = d(x).
The Hankel function of the first kind:

1 00 ¢(2/2)(t-1/1)
Hé):C—>(C, z— = [ ¢ dt
i JO t

with H\"(z) ~ /2@ forz € R and z > 1.

T




Representation of wu,,

Definition:
e SaQ,Rn\Q faQ w(y)dS(y)

- Single layer potential operator

o Koapmalt] (x) = [oq Foetlop(y)dS (y)

- Double layer potential operator

Representation:

Use = S@Q,R’”\ﬁ [90} + KOQ.R”\Q W}

with some densities ¢ and ).



Complexification of the function ||

The function p(z) = |z| for x € R? allows an analytic
extension to G C C?, where

G={z2=(21,2) €C?; 22 =27+ 25 € C*\(—00,0)}
This extension is denoted by p again and we have:

p:G—{ze€C; Rz>0}

The complex plane




Neighborhood of I’

Lemma: The manifold I'\(Q2 C C? has a neighborhood
U C C? such that, for all y € 990 and z € U we have
z—1y € G, ie.




Extension of the fundamental solution ¢

Lemma: The Hankel function Hél) is analytic in

{z € C|Rz > 0}.

Definition:

B(z,¢) = 1H (k- p(z = (), 2—-(€G.
Note:

,Extended ® — extended S and K — extended u.*



Extensions

Analytic extensions of the Operators S and K:

® Sou [ = Jon ®( (y)dS(y), zeU

o Koop [U](2) i= fyo ZELy(y)dS(y), =€ U

Definition: v : U — R, with

u(z) == Saau @] (2) + Kooy [¥] (2)



Properties of the function u = u(z)

1. 2 — u(z) is C*analytic in U.

2. U() |D\ﬁ = Uge

3. 2z — u(z) satisfies the complexified Helmholtz equation

in U,

D\Q -

(A, + k%) u(z) =0,
where A, = 02 + 02

|| =00

4. uo F(xz) — 0 exponentially.



Representation of A u(z)

Let u be an analytic function defined in a neighborhood
of ' € C% Then, for z € T,

A.u(z) = (div H'H grad - m" H grad) [u o F] (F(z)),

where
_yp
. ) 1442 §ou
OH—([+Z<DG)>T—< igifl 1—|—8Z'Qgﬂ)
DF * V2



Corollary

The ,Bérenger equation* [(A, + k%) -u(z)]|r =0 assumes
in R? the form

(div H'H grad - m" H grad + k?) [u o F] = 0.

Definition: A = div H'H grad - m? H grad
Complexified analogue of the space H' ,(R*\(Q)
H(l(s)(R2\§) = {u € H(R?\Q) |

o7 (h(x))

1My, (1) oo € u(x) |= = limp,(2)—0 e’ gradu(x

uniformly in Z'}.



The full-space Bérenger problem

We want to find a function u € H (R2\Q) such that
1. (A + k)u =0 in R2\Q
2. % o0 =g c H‘l/Q((‘?Q)
Existence and uniqueness theorem
The full-space Bérenger problem has a unique solution

uc € H! (R*\Q), where € > 0 is arbitrary. Furthermore we
have

Uc }D\ﬁ — Usc D\Q -



Part 3: Definition of the truncated Bérenger BVP

Definition: The layer of thickness p > 0 around D is
defined by

L(p) :={z € R:\D | h(z) < p}.
We define further

D(p) = DU L(p).

D(rho)




The truncated Bérenger problem

We want to find a function up € H*(D(p)\ ) satisfying
1. (A + E2)u = 0 in D(p)\Q
o0 = g € H*1/2(8Q)

ou

2. on

3. U }8D(p) =0

complexified
Helmholtz PDE




Part 4: Main theorem

For any wavenumber k£ > 0, there exists a positive con-
stant po(k) such that, for all p > pg(k), the trunca-
ted Bérenger problem (bounded) has a unique solution

ur = ur(p) € H'(D(p)\Q).

Moreover, this solution converges exponentially to the so-
lution wug,. of the initial scattering problem(unbounded) near €2:



It could be so easy...

By linearity of the operator (ﬁ + k?), we have for n := uc — ur
1. (A+ k) =0 in D(p)\Q
2. Wy =0

3. 1 |an(y) = uc

If we could show that

7]l o) < Clluc || meepe) » € indep. of p,

the main theorem was proved, since

Juc o — 0 a5 p = oo



... but it isn’t. —
Part 5: Outline of the proof of the Main theorem
Three steps:

1. Full-space Bérenger BVP <= BVP (A) near ()

2. Truncated Bérenger BVP <= BVP (B) near ()

3. BVP (B) — BVP (A) if the layer thickness p — 00

near ).

Since we know that the full-space Bérenger BVP <= scatte-
ring BVP near (), the Main Theorem is then proved.



The idea behind step 1

Let 0 < p1 < P2 and DJ = D(pJ), ] = 1,2
Find u with (A + k?)u = 0 in D\ and

%ul0=0, ulap,=Pulop,),

with the double surface operator P = Kyp, ap,(5 + Kop,) ",

KaDlgD( ) pvfaD 88613 (ZC y)dS( )7 T € alDl




Characterization of P

If for a function v we have
1L (A+Kk)u=0 inR?\D,
2. U ’0D1 = w,

- PU}:U’@DQ.

Helmholtz PDE




The Theorem behind step 1

Assume that p; and p, are so chosen that k* is not the
Dirichlet - eigenvalue of —A in Do\ D;.

The BVP (A + k%)u = 0 in D,\Q) with
Mloa=9, ulop,=Plulsp,),
has a unique solution u, and U, = u in Ds.

The task of step 1

e Find P analogous to P for the full-space Bérenger pro-
blem.

e Prove the ,, Theorem behind step 1“ with P replaced by Fc.



Definition of the BVP (A)

Let the BVP (A) be defined by
1. (A + E2)u =0 in D,\Q
2. % oo =g € HY0Q)
3. u|op, = Pc(ulop,),

~

where Pr = K(A),apl,am( + K 8D1) Y

fN((A),apl,aDQ = Jop, %(2) (y)dS(y),
(A+ A+ ]CQ)(I)(A)(ZU, y) = —d0(x —y) and

A=A(e) : LY(D1) — LA(Dy), [All<e,

limp ()00 SUDPye K cR2 glh—er(h(@) |D§‘€I/>(A)(a:, y) |=0,

o |< 2.



The Theorem of step 1

The BVP (A) has a unique solution u in H'(D,\(2), and
u = uc in Dy\Q.

Lemma

The BVP
1. (A+k)u=0 in R\D,
2. U }31)1 = f c Hl/Q(aDl)

has a unique SolutioE u € H(ll_e)(Rz\El) and it can be

represented as u = K 4)ap, r2\D, (0], where @ is the unique
solution of

(L + Kon,) le] = f.



The Theorem of step 2

Let p > py. There exists an operator
Pp . H1/2<8D1) — H1/2(8D2)

such that the truncated Bérenger problem is equivalent to
the near-field BVP (B):

1. (A + k2w = 0 in D(p)\Q
2. %40 =g € HY*09Q)
3. U ‘aDz - Pﬂ(u ‘3171) .

Moreover, we have

lim, ., e*=970) || P, — P ||= 0 for all € > 0.



Lemma

The BVP (C)
1. (A + k2)u = 0 in D(p)\D;
2. u|op, = f € HY*(ODy)
3. U }aDp =0

has a unique solution u € H*(D(p)\D,).



Step 3 - The connection between (A) and (B)

Assume that P : HY2(dD;) — HY%(8D,) is an opera-
tor with the property

| P—Pef<e.

~

Consider the BVP (A) with FP¢ replaced by P. For e > 0
small enough, that modified BVP has a unique solution
u € H'(0D,\2), and we have

luc =@ | mpam) < Ce

for some positive constant C' > 0.



Lemma

This BVP (D) is an ,equivalent weak form of* the BVP
(A)

1. (A + k2w = Fu in Dy\Q

2. % }aQ =g c H‘1/2(OQ)

3. U ‘(‘3D2 = O,
where Fu = —(A + k2)RPg(u|sp,) and
R: H'?(0D,) — H'(D,\Q),
R(U |3D2) =u

a right inverse of the trace mapping u — u |gp, .



Thank you for your attention!



