Analysis of PML for the Helmholtz equation

What's the physical situation?

Example

Let Ω represent an infinite cylinder in \mathbb{R}^{3}. We consider how the magnetic field $\mathbf{H}=\mathbf{H}(\mathbf{x}, t)$ is scattered by the cylinder.

We assume that the magnetic field is parallel to the axis of the cylinder.

With further assumptions, the scattered magnetic field can be written as

$$
\mathbf{H}=u(r, \phi) e^{-i w t} \mathbf{e}_{z}
$$

- where (r, ϕ) are the polar coordinates in the plane,
- $w>0$ the angular frequency,
- e_{z} the direction of the axis of the cylinder.

Mathematical analysis of the situation

- Mathematical description?
- How to describe „the scattering"?

Answer (w.r.t. the Example)

For the amplitude $u=u(r, \phi)$ we have to solve:

1. $\left(\Delta+k^{2}\right) u=0$ in $\mathbb{R}^{2} \backslash \bar{\Omega}$,
2. $\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}=g$,
3. $\lim _{r \rightarrow \infty} r^{1 / 2}\left(\frac{\partial u}{\partial r}-i k u\right)=0$ uniformly in \hat{x},
where $k^{2}=w^{2} \epsilon_{0} \mu_{0}>0$ and
$r=|x|$ and $\hat{x}=x / r, \quad r \neq 0$.
the equation (3) is called the
„Sommerfeld radiation condition at infinity".

Difficulties

Since Ω is bounded, $\mathbb{R}^{2} \backslash \bar{\Omega}$ is unbounded.
Solution: The PML - method.
Overview

1. Scattering BVP $\longrightarrow u_{s c}$.
2. Full-space Bérenger BVP $\longrightarrow u_{\mathbb{C}}$ with $\left.u_{\mathbb{C}}\right|_{D}=\left.u_{s c}\right|_{D}$.
3. Truncated Bérenger BVP $\longrightarrow \widetilde{u}_{\mathbb{C}}(\rho)$, bounded domain.
4. Main Theorem: $\widetilde{u}_{B}(\rho) \xrightarrow{\rho \rightarrow \infty} u_{s c}$ near Ω.
5. Outline of the proof.

Part 1: The scattering BVP

1. $\left(\Delta+k^{2}\right) u=0$ in $\mathbb{R}^{2} \backslash \bar{\Omega}$
2. $\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}=g \in H^{-1 / 2}(\partial \Omega)$
3. $\lim _{r \rightarrow \infty} r^{1 / 2}\left(\frac{\partial u}{\partial r}-i k u\right)=0$ uniformly in \hat{x}

Note: $(3) \Longrightarrow u(r, \varphi)^{r \rightarrow \infty} C_{1} e^{i k r+C_{2} \varphi}$

Existence Theorem

The scattering BVP has a unique (weak) solution $u \in H_{\text {rad }}^{1}\left(\mathbb{R}^{2} \backslash \bar{\Omega}\right)$, where
$H_{r a d}^{1}\left(\mathbb{R}^{2} \backslash \bar{\Omega}\right)=\left\{u ; u \in H^{1}\left(B_{R}(0) \backslash \bar{\Omega}\right)\right.$ for all $R>0$
and u satisfies the Sommerfeld radiation condition \} .
This unique solution of the scattering problem is denoted by $u_{s c}$.

Part 2: The Construction

We introduce a strictly convex set $D \subset \mathbb{R}^{2}$, such that

1. $\bar{\Omega} \subset D$,
2. D has a C^{2}-boundary.

Definition of h

Let $x \in \mathbb{R}^{2} \backslash D$. Then we define

- $h(x):=\operatorname{dist}(x, \partial D) \geq 0$ and
- $p(x) \in \partial D$ such that $h(x)=|x-p(x)|$.

With $x=p(x)+h(x) \cdot \mathbf{n}(x)$.

Definition of τ

Further, let $\tau:[0, \infty) \longrightarrow[0, \infty)$ be a C^{2}-function with:

- the derivative τ^{\prime} is strictly increasing,
- $\lim _{s \rightarrow \infty} \tau^{\prime}(s)=\infty$
- $\tau(0)=\tau^{\prime}(0+)=\tau^{\prime \prime}(0+)=0$
- $\lim _{s \rightarrow \infty} e^{-\epsilon \cdot \tau(s)} \tau^{\prime}(s)=\lim _{s \rightarrow \infty} e^{-\epsilon \cdot \tau(s)} \tau^{\prime \prime}(s)=0$ for all $\epsilon>0$.

Definition of the function a

We define a function $a: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ by setting

$$
a(x):= \begin{cases}0 & \text { if } x \in D \\ \tau(h(x)) \cdot \mathbf{n}(x) & \text { if } x \in \mathbb{R}^{2} \backslash \bar{D}\end{cases}
$$

Definition of the stretching function F

We define the function $F: \mathbb{R}^{2} \longrightarrow \mathbb{C}^{2}$ by setting
$F(x):=x+i \cdot a(x)$.

Definition of Γ

$$
\Gamma:=F\left(\mathbb{R}^{2}\right)=\left\{z \in \mathbb{C}^{2} ; z=x+i \cdot a(x), x \in \mathbb{R}^{2}\right\}
$$

The fundamental solution of the Helmholtz equation
$\Phi(x, y)=\frac{i}{4} \cdot H_{0}^{(1)}(k \cdot|x-y|)$
is the fundamental solution for the Helmholtz equation, i.e.
$\left(\Delta_{y}+k^{2}\right) \Phi(x, y)=\delta(x)$.
The Hankel function of the first kind:
$H_{0}^{(1)}: \mathbb{C} \longrightarrow \mathbb{C}, \quad z \longmapsto \frac{1}{i \pi} \int_{0}^{\infty} \frac{e^{(z / 2)(t-1 / t)}}{t} d t$
with $H_{0}^{(1)}(x) \approx \sqrt{\frac{2}{\pi x}} e^{i(x-\pi / 4)} \quad$ for $x \in \mathbb{R} \quad$ and $x \gg 1$.

Representation of $u_{s c}$

Definition:

- $S_{\partial \Omega, \mathbb{R}^{n} \backslash \Omega}[\varphi](x):=\int_{\partial \Omega} \Phi(x, y) \varphi(y) d S(y)$
- Single layer potential operator
- $K_{\partial \Omega, \mathbb{R}^{n} \backslash \Omega}[\psi](x):=\int_{\partial \Omega} \frac{\partial \Phi(x, y)}{\partial n(y)} \psi(y) d S(y)$
- Double layer potential operator

Representation:

$u_{s c}=S_{\partial \Omega, \mathbb{R}^{n} \backslash \bar{\Omega}}[\varphi]+K_{\partial \Omega, \mathbb{R}^{n} \backslash \bar{\Omega}}[\psi]$
with some densities φ and ψ.

Complexification of the function $|\cdot|$

The function $\rho(x):=|x|$ for $x \in \mathbb{R}^{2}$ allows an analytic extension to $G \subset \mathbb{C}^{2}$, where
$G:=\left\{z=\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} ; z^{2}=z_{1}^{2}+z_{2}^{2} \in \mathbb{C}^{2} \backslash(-\infty, 0)\right\}$
This extension is denoted by ρ again and we have:
$\rho: G \longrightarrow\{z \in \mathbb{C} ; \Re z>0\}$

Neighborhood of Γ

Lemma: The manifold $\Gamma \backslash \bar{\Omega} \subset \mathbb{C}^{2}$ has a neighborhood $U \subset \mathbb{C}^{2}$ such that, for all $y \in \partial \Omega$ and $z \in U$ we have $z-y \in G$, i.e.
$\left(z_{1}-y_{1}\right)^{2}+\left(z_{2}-y_{2}\right)^{2} \notin \mathbb{R}_{-}$

Extension of the fundamental solution Φ
Lemma: The Hankel function $H_{0}^{(1)}$ is analytic in $\{z \in \mathbb{C} \mid \Re z>0\}$.

Definition:

$\Phi(z, \zeta):=\frac{i}{4} H_{0}^{(1)}(k \cdot \rho(z-\zeta)), \quad z-\zeta \in G$.
Note:
"Extended $\Phi \longrightarrow$ extended S and $K \longrightarrow$ extended $u_{s c}{ }^{\text {" }}$

Extensions

Analytic extensions of the Operators S and K :

- $S_{\partial \Omega, U}[\varphi](z):=\int_{\partial \Omega} \Phi(z, y) \varphi(y) d S(y), \quad z \in U$
- $K_{\partial \Omega, U}[\psi](z):=\int_{\partial \Omega} \frac{\partial \Phi(z, y)}{\partial n(y)} \psi(y) d S(y), \quad z \in U$

Definition: $u: U \longrightarrow \mathbb{R}$, with
$u(z):=S_{\partial \Omega, U}[\varphi](z)+K_{\partial \Omega, U}[\psi](z)$

Properties of the function $u=u(z)$

1. $z \longmapsto u(z)$ is \mathbb{C}^{2}-analytic in U.
2. $\left.u()\right|_{.D \backslash \bar{\Omega}}=\left.u_{s c}\right|_{D \backslash \bar{\Omega}}$.
3. $z \longmapsto u(z)$ satisfies the complexified Helmholtz equation in U,
$\left(\Delta_{z}+k^{2}\right) u(z)=0$,
where $\Delta_{z}=\partial_{z_{1}}^{2}+\partial_{z_{2}}^{2}$.
4. $u \circ F(x) \xrightarrow{|x| \rightarrow \infty} 0$ exponentially.

Representation of $\Delta_{z} u(z)$

Let u be an analytic function defined in a neighborhood of $\Gamma \subset \mathbb{C}^{2}$. Then, for $z \in \Gamma$,
$\Delta_{z} u(z)=\left(\operatorname{div} H^{T} H \operatorname{grad}-m^{T} H \operatorname{grad}\right)[u \circ F]\left(F^{-1}(z)\right)$,
where

- $H=(\underbrace{I+i(D a)}_{D F})^{-T}=\left(\begin{array}{cc}1+i \frac{\partial a_{1}}{\partial x_{1}} & i \frac{\partial a_{1}}{\partial x_{1}} \\ i \frac{\partial a_{2}}{\partial x_{1}} & 1+i \frac{\partial a_{2}}{\partial x_{2}}\end{array}\right)^{-T}$
- $\left.m=\left(\begin{array}{l}\frac{\partial}{\partial x_{1}} \\ \frac{\partial}{\partial x_{1}} \\ \frac{\partial}{\partial x_{1}}\end{array}\right)_{1,1}+\frac{\partial}{\partial)_{2,1}}+\frac{\partial}{\partial x_{2}}(H)_{1,2}, ~(H)_{2,2}\right)$

Corollary

The „Bérenger equation" $\left.\left[\left(\Delta_{z}+k^{2}\right) \cdot u(z)\right]\right|_{\Gamma}=0$ assumes in \mathbb{R}^{2} the form
$\left(\operatorname{div} H^{T} H \operatorname{grad}-m^{T} H \operatorname{grad}+k^{2}\right)[u \circ F]=0$.
Definition: $\widetilde{\Delta}:=\operatorname{div} H^{T} H \operatorname{grad}-m^{T} H \operatorname{grad}$
Complexified analogue of the space $H_{r a d}^{1}\left(\mathbb{R}^{2} \backslash \bar{\Omega}\right)$
$H_{(\delta)}^{1}\left(\mathbb{R}^{2} \backslash \bar{\Omega}\right):=\left\{u \in H^{1}\left(\mathbb{R}^{2} \backslash \bar{\Omega}\right) \mid\right.$
$\lim _{h(x) \longrightarrow \infty} e^{\delta \tau(h(x))}|u(x)|=\lim _{h(x) \longrightarrow \infty} e^{\delta \tau(h(x))}|\operatorname{grad} u(x)|=0$
uniformly in $\widehat{x}\}$.

The full-space Bérenger problem

We want to find a function $u \in H_{(\delta)}^{1}\left(\mathbb{R}^{2} \backslash \bar{\Omega}\right)$ such that

1. $\left(\widetilde{\Delta}+k^{2}\right) u=0$ in $\mathbb{R}^{2} \backslash \bar{\Omega}$
2. $\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}=g \in H^{-1 / 2}(\partial \Omega)$

Existence and uniqueness theorem

The full-space Bérenger problem has a unique solution $u_{\mathbb{C}} \in H_{k-\epsilon}^{1}\left(\mathbb{R}^{2} \backslash \bar{\Omega}\right)$, where $\epsilon>0$ is arbitrary. Furthermore we have
$\left.u_{\mathbb{C}}\right|_{D \backslash \bar{\Omega}}=\left.u_{s c}\right|_{D \backslash \bar{\Omega}}$.

Part 3: Definition of the truncated Bérenger BVP
Definition: The layer of thickness $\rho>0$ around D is defined by
$L(\rho):=\left\{x \in \mathbb{R}^{2} \backslash \bar{D} \mid h(x)<\rho\right\}$.
We define further
$D(\rho):=D \cup L(\rho)$.

The truncated Bérenger problem

We want to find a function $u_{T} \in H^{1}(D(\rho) \backslash \bar{\Omega})$ satisfying

1. $\left(\widetilde{\Delta}+k^{2}\right) u=0$ in $D(\rho) \backslash \bar{\Omega}$
2. $\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}=g \in H^{-1 / 2}(\partial \Omega)$
3. $\left.u\right|_{\partial D(\rho)}=0$

Part 4: Main theorem

For any wavenumber $k>0$, there exists a positive constant $\rho_{0}(k)$ such that, for all $\rho \geq \rho_{0}(k)$, the truncated Bérenger problem (bounded) has a unique solution $u_{T}=u_{T}(\rho) \in H^{1}(D(\rho) \backslash \bar{\Omega})$.

Moreover, this solution converges exponentially to the solution $u_{s c}$ of the initial scattering problem(unbounded) near Ω :
$\lim _{\rho \longrightarrow \infty} e^{(k-\epsilon) \tau(\rho)}\left\|u_{s c}-u_{T}(\rho)\right\|_{H^{1}(D(\rho) \backslash \bar{\Omega})}=0$ for all $\epsilon>0$.

It could be so easy...

By linearity of the operator $\left(\widetilde{\Delta}+k^{2}\right)$, we have for $\eta:=u_{\mathbb{C}}-u_{T}$

1. $\left(\widetilde{\Delta}+k^{2}\right) \eta=0$ in $D(\rho) \backslash \bar{\Omega}$
2. $\left.\frac{\partial \eta}{\partial n}\right|_{\partial \Omega}=0$
3. $\left.\eta\right|_{\partial D(\rho)}=u_{\mathbb{C}}$

If we could show that
$\|\eta\|_{H^{1}(D \backslash \bar{\Omega})} \leq C\left\|u_{\mathbb{C}}\right\|_{H^{1 / 2}(\partial D(\rho))}, \quad C$ indep. of ρ,
the main theorem was proved, since
$\left\|u_{\mathbb{C}}\right\|_{H^{1 / 2}(\partial D(\rho))} \rightarrow 0$ as $\rho \rightarrow \infty$.
... but it isn't. \rightarrow
Part 5: Outline of the proof of the Main theorem
Three steps:

1. Full-space Bérenger BVP \Longleftrightarrow BVP (A) near Ω
2. Truncated Bérenger BVP \Longleftrightarrow BVP (B) near Ω
3. BVP $(B) \longrightarrow$ BVP (A) if the layer thickness $\rho \longrightarrow \infty$ near Ω.

Since we know that the full-space Bérenger BVP \Longleftrightarrow scattering BVP near Ω, the Main Theorem is then proved.

The idea behind step 1

Let $0<\rho_{1}<\rho_{2}$ and $D_{j}:=D\left(\rho_{j}\right), \quad j=1,2$.
Find u with $\left(\Delta+k^{2}\right) u=0$ in $D_{2} \backslash \Omega$ and
$\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}=g,\left.\quad u\right|_{\partial D_{2}}=P\left(\left.u\right|_{\partial D_{1}}\right)$,
with the double surface operator $P=K_{\partial D_{1}, \partial D_{2}}\left(\frac{1}{2}+K_{\partial D_{1}}\right)^{-1}$,
$K_{\partial D_{1}} \varphi(x)=$ p.v. $\int_{\partial D_{1}} \frac{\partial \Phi}{\partial n(y)}(x, y) d S(y), \quad x \in \partial D_{1}$.

Characterization of P

If for a function u we have

1. $\left(\Delta+k^{2}\right) u=0 \quad$ in $\mathbb{R}^{2} \backslash \overline{D_{1}}$
2. $\left.u\right|_{\partial D_{1}}=w$,
$\Longrightarrow P w=\left.u\right|_{\partial D_{2}}$.

The Theorem behind step 1

Assume that ρ_{1} and ρ_{2} are so chosen that k^{2} is not the Dirichlet - eigenvalue of $-\Delta$ in $D_{2} \backslash \bar{D}_{1}$.

The BVP $\left(\Delta+k^{2}\right) u=0$ in $D_{2} \backslash \Omega$ with
$\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}=g,\left.\quad u\right|_{\partial D_{2}}=P\left(\left.u\right|_{\partial D_{1}}\right)$,
has a unique solution u, and $u_{s c} \equiv u$ in D_{2}.
The task of step 1

- Find $P_{\mathbb{C}}$ analogous to P for the full-space Bérenger problem.
- Prove the „Theorem behind step 1" with P replaced by $P_{\mathbb{C}}$.

Definition of the BVP (A)

Let the BVP (A) be defined by

1. $\left(\widetilde{\Delta}+k^{2}\right) u=0$ in $D_{2} \backslash \bar{\Omega}$
2. $\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}=g \in H^{-1 / 2}(\partial \Omega)$
3. $\left.u\right|_{\partial D_{2}}=P_{\mathbb{C}}\left(\left.u\right|_{\partial D_{1}}\right)$,
where $P_{\mathbb{C}}:=\widetilde{K}_{(A), \partial D_{1}, \partial D_{2}}\left(\frac{1}{2}+\widetilde{K}_{(A), \partial D_{1}}\right)^{-1}$,
$\widetilde{K}_{(A), \partial D_{1}, \partial D_{2}}[\psi](x):=\int_{\partial D_{1}} \frac{\partial \widetilde{\Phi}_{A A}(x, y)}{\partial n(y)} \psi(y) d S(y)$,
$\left(\widetilde{\Delta}+A+k^{2}\right) \widetilde{\Phi}_{(A)}(x, y)=-\delta(x-y)$ and
$A=A(\epsilon): L^{2}\left(D_{1}\right) \rightarrow L^{2}\left(D_{1}\right), \quad\|A\|<\epsilon$,
$\lim _{h(x) \rightarrow \infty} \sup _{y \in K \subset \mathbb{R}^{2}} e^{(k-\epsilon) \tau(h(x))}\left|D_{x}^{\alpha} \widetilde{\Phi}_{(A)}(x, y)\right|=0, \quad|\alpha| \leq 2$.

The Theorem of step 1

The BVP (A) has a unique solution u in $H^{1}\left(D_{2} \backslash \bar{\Omega}\right)$, and $u=u_{\mathbb{C}}$ in $D_{2} \backslash \bar{\Omega}$.

Lemma

The BVP

1. $\left(\widetilde{\Delta}+k^{2}\right) u=0$ in $\mathbb{R}^{2} \backslash \bar{D}_{1}$
2. $\left.u\right|_{\partial D_{1}}=f \in H^{1 / 2}\left(\partial D_{1}\right)$
has a unique solution $u \in H_{(1-\epsilon)}^{1}\left(\mathbb{R}^{2} \backslash \bar{D}_{1}\right)$ and it can be represented as $u=\widetilde{K}_{(A), \partial D_{1}, \mathbb{R}^{2} \backslash \bar{D}_{1}}[\varphi]$, where φ is the unique solution of

$$
\left(\frac{1}{2}+\widetilde{K}_{(A), \partial D_{1}}\right)[\varphi]=f .
$$

The Theorem of step 2

Let $\rho>\rho_{2}$. There exists an operator

$$
P_{\rho}: H^{1 / 2}\left(\partial D_{1}\right) \longrightarrow H^{1 / 2}\left(\partial D_{2}\right)
$$

such that the truncated Bérenger problem is equivalent to the near-field BVP (B):

$$
\begin{aligned}
& \text { 1. }\left(\widetilde{\triangle}+k^{2}\right) u=0 \text { in } D(\rho) \backslash \bar{\Omega} \\
& \text { 2. }\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}=g \in H^{1 / 2}(\partial \Omega) \\
& \text { 3. }\left.u\right|_{\partial D_{2}}=P_{\rho}\left(\left.u\right|_{\partial D_{1}}\right) .
\end{aligned}
$$

Moreover, we have
$\lim _{\rho \rightarrow \infty} e^{(k-\epsilon) \tau(\rho)}\left\|P_{\rho}-P_{\mathbb{C}}\right\|=0$ for all $\epsilon>0$.

Lemma

The BVP (C)

1. $\left(\widetilde{\Delta}+k^{2}\right) u=0$ in $D(\rho) \backslash \bar{D}_{1}$
2. $\left.u\right|_{\partial D_{1}}=f \in H^{1 / 2}\left(\partial D_{1}\right)$
3. $\left.u\right|_{\partial D_{\rho}}=0$
has a unique solution $u \in H^{1}\left(D(\rho) \backslash \bar{D}_{1}\right)$.

Step 3 - The connection between (A) and (B)
Assume that $\widetilde{P}: H^{1 / 2}\left(\partial D_{1}\right) \longrightarrow H^{1 / 2}\left(\partial D_{2}\right)$ is an operator with the property
$\left\|\widetilde{P}-P_{\mathbb{C}}\right\|<\epsilon$.
Consider the BVP (A) with $P_{\mathbb{C}}$ replaced by \widetilde{P}. For $\epsilon>0$ small enough, that modified BVP has a unique solution $\widetilde{u} \in H^{1}\left(\partial D_{2} \backslash \bar{\Omega}\right)$, and we have
$\left\|u_{\mathbb{C}}-\widetilde{u}\right\|_{H^{1}\left(D_{2} \backslash \bar{\Omega}\right)}<C \epsilon$
for some positive constant $C>0$.

Lemma

This BVP (D) is an "equivalent weak form of" the BVP (A)

1. $\left(\widetilde{\Delta}+k^{2}\right) u=F u$ in $D_{2} \backslash \bar{\Omega}$
2. $\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}=g \in H^{-1 / 2}(\partial \Omega)$
3. $\left.u\right|_{\partial D_{2}}=0$,
where $F u=-\left(\widetilde{\Delta}+k^{2}\right) R P_{\mathbb{C}}\left(\left.u\right|_{\partial D_{1}}\right)$ and

$$
R: H^{1 / 2}\left(\partial D_{2}\right) \rightarrow H^{1}\left(D_{2} \backslash \bar{\Omega}\right)
$$

$R\left(\left.u\right|_{\partial D_{2}}\right)=u$
a right inverse of the trace mapping $\left.u \mapsto u\right|_{\partial D_{2}}$.

Thank you for your attention!

