Analysis of PML for the Helmholtz equation

What's the physical situation?

Example

Let Ω represent an infinite cylinder in \mathbb{R}^3 . We consider how the magnetic field $\mathbf{H} = \mathbf{H}(\mathbf{x}, t)$ is scattered by the cylinder.

We assume that the magnetic field is parallel to the axis of the cylinder.

With further assumptions, the scattered magnetic field can be written as

$$\mathbf{H} = u(r,\phi)e^{-iwt}\mathbf{e}_z$$

- where (r, ϕ) are the polar coordinates in the plane,
- w > 0 the angular frequency,
- \mathbf{e}_z the direction of the axis of the cylinder.

Mathematical analysis of the situation

- Mathematical description?
- How to describe "the scattering"?

Answer (w.r.t. the Example)

For the amplitude $u = u(r, \phi)$ we have to solve:

- 1. $(\Delta + k^2)u = 0$ in $\mathbb{R}^2 \setminus \overline{\Omega}$, 2. $\frac{\partial u}{\partial n}|_{\partial\Omega} = g$,
- 3. $\lim_{r\to\infty} r^{1/2} \left(\frac{\partial u}{\partial r} iku\right) = 0$ uniformly in \hat{x} ,

where $k^2 = w^2 \epsilon_0 \mu_0 > 0$ and

$$r = |x|$$
 and $\hat{x} = x/r$, $r \neq 0$.

the equation (3) is called the "Sommerfeld radiation condition at infinity".

Difficulties

Since Ω is bounded, $\mathbb{R}^2 \setminus \overline{\Omega}$ is unbounded.

Solution: The PML - method.

Overview

- 1. Scattering BVP $\longrightarrow u_{sc}$.
- 2. Full-space Bérenger BVP $\longrightarrow u_{\mathbb{C}}$ with $u_{\mathbb{C}}|_{D} = u_{sc}|_{D}$.
- 3. Truncated Bérenger BVP $\longrightarrow \widetilde{u}_{\mathbb{C}}(\rho)$, bounded domain.

4. Main Theorem: $\widetilde{u}_B(\rho) \xrightarrow{\rho \to \infty} u_{sc}$ near Ω .

5. Outline of the proof.

Part 1: The scattering BVP

1.
$$(\Delta + k^2)u = 0$$
 in $\mathbb{R}^2 \setminus \overline{\Omega}$
2. $\frac{\partial u}{\partial n}|_{\partial\Omega} = g \in H^{-1/2}(\partial\Omega)$
3. $\lim_{r\to\infty} r^{1/2}(\frac{\partial u}{\partial r} - iku) = 0$ uniformly in \hat{x}

Note: (3) $\Longrightarrow u(r,\varphi) \xrightarrow{r \to \infty} C_1 e^{ikr + C_2\varphi}$

Existence Theorem

The scattering BVP has a unique (weak) solution $u \in H^1_{rad}(\mathbb{R}^2 \setminus \overline{\Omega})$, where

 $H^1_{rad}(\mathbb{R}^2 \setminus \overline{\Omega}) = \{ u \; ; \; u \in H^1(B_R(0) \setminus \overline{\Omega}) \text{ for all } R > 0 \}$

and u satisfies the Sommerfeld radiation condition $\}$.

This unique solution of the scattering problem is denoted by u_{sc} .

Part 2: The Construction

We introduce a strictly convex set $D \subset \mathbb{R}^2$, such that 1. $\overline{\Omega} \subset D$,

2. D has a C^2 -boundary.

Definition of h

Let $x \in \mathbb{R}^2 \setminus D$. Then we define

• $h(x) := dist(x, \partial D) \ge 0$ and

• $p(x) \in \partial D$ such that h(x) = |x - p(x)|.

With $x = p(x) + h(x) \cdot \mathbf{n}(x)$.

Definition of τ

Further, let $\tau : [0, \infty) \longrightarrow [0, \infty)$ be a C^2 -function with:

- the derivative τ' is strictly increasing,
- $\lim_{s\to\infty} \tau'(s) = \infty$
- $\tau(0) = \tau'(0+) = \tau''(0+) = 0$
- $\lim_{s \to \infty} e^{-\epsilon \cdot \tau(s)} \tau'(s) = \lim_{s \to \infty} e^{-\epsilon \cdot \tau(s)} \tau''(s) = 0$ for all $\epsilon > 0$.

Definition of the function a

We define a function $a: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ by setting

$$a(x) := \left\{ \begin{array}{ll} 0 & \text{if } x \in D \\ \tau(h(x)) \cdot \mathbf{n}(x) & \text{if } x \in \mathbb{R}^2 \backslash \overline{D} \end{array} \right.$$

Definition of the stretching function F

We define the function $F : \mathbb{R}^2 \longrightarrow \mathbb{C}^2$ by setting

 $F(x) := x + i \cdot a(x).$

Definition of Γ

$\Gamma:=F(\mathbb{R}^2)=\{z\in\mathbb{C}^2\;;\;z=x+i\cdot a(x),x\in\mathbb{R}^2\}$

The fundamental solution of the Helmholtz equation

$$\Phi(x,y) = \frac{i}{4} \cdot H_0^{(1)}(k \cdot |x-y|)$$

is the **fundamental solution** for the Helmholtz equation, i.e.

$$(\Delta_y + k^2)\Phi(x, y) = \delta(x).$$

The **Hankel function** of the first kind:

$$H_0^{(1)}: \mathbb{C} \longrightarrow \mathbb{C}, \quad z \longmapsto \frac{1}{i\pi} \int_0^\infty \frac{e^{(z/2)(t-1/t)}}{t} dt$$

with $H_0^{(1)}(x) \approx \sqrt{\frac{2}{\pi x}} e^{i(x-\pi/4)} \quad \text{ for } x \in \mathbb{R} \quad \text{and } x \gg 1.$

Representation of u_{sc}

Definition:

- $S_{\partial\Omega,\mathbb{R}^n\setminus\overline{\Omega}}\left[\varphi\right](x):=\int_{\partial\Omega}\Phi(x,y)\varphi(y)dS(y)$
 - Single layer potential operator
- $\bullet \ K_{\partial\Omega,\mathbb{R}^n\setminus\overline{\Omega}}\left[\psi\right](x) \coloneqq \int_{\partial\Omega} \frac{\partial\Phi(x,y)}{\partial n(y)} \psi(y) dS(y)$
 - Double layer potential operator

Representation:

$$u_{sc} = S_{\partial\Omega,\mathbb{R}^n\setminus\overline{\Omega}}\left[arphi
ight] + K_{\partial\Omega,\mathbb{R}^n\setminus\overline{\Omega}}\left[\psi
ight]$$

with some densities φ and ψ .

Complexification of the function $|\cdot|$

The function $\rho(x) := |x|$ for $x \in \mathbb{R}^2$ allows an analytic extension to $G \subset \mathbb{C}^2$, where

$$G := \{ z = (z_1, z_2) \in \mathbb{C}^2 ; \ z^2 = z_1^2 + z_2^2 \in \mathbb{C}^2 \setminus (-\infty, 0) \}$$

This extension is denoted by ρ again and we have:

 $\rho: G \longrightarrow \{ z \in \mathbb{C} \ ; \ \Re z > 0 \}$

Neighborhood of Γ

Lemma: The manifold $\Gamma \setminus \overline{\Omega} \subset \mathbb{C}^2$ has a neighborhood $U \subset \mathbb{C}^2$ such that, for all $y \in \partial \Omega$ and $z \in U$ we have $z - y \in G$, i.e.

$$(z_1 - y_1)^2 + (z_2 - y_2)^2 \notin \mathbb{R}_-$$

Extension of the fundamental solution Φ

Lemma: The Hankel function $H_0^{(1)}$ is analytic in $\{z \in \mathbb{C} | \Re z > 0\}.$

Definition:

$$\Phi(z,\zeta) := \frac{i}{4} H_0^{(1)}(k \cdot \rho(z-\zeta)), \quad z-\zeta \in G.$$

Note:

"Extended $\Phi \longrightarrow$ extended S and $K \longrightarrow$ extended u_{sc} "

Extensions

Analytic extensions of the Operators S and K:

•
$$S_{\partial\Omega,U}[\varphi](z) := \int_{\partial\Omega} \Phi(z,y)\varphi(y)dS(y), \quad z \in U$$

• $\overline{K}_{\partial\Omega,U}\left[\psi\right](z) := \int_{\partial\Omega} \frac{\partial\Phi(z,y)}{\partial n(y)} \psi(y) dS(y), \quad z \in U$

Definition: $u: U \longrightarrow \mathbb{R}$, with $u(z) := S_{\partial\Omega,U} [\varphi] (z) + K_{\partial\Omega,U} [\psi] (z)$ **Properties of the function** u = u(z)

1. $z \mapsto u(z)$ is \mathbb{C}^2 -analytic in U.

2.
$$u(.)|_{D\setminus\overline{\Omega}} = u_{sc}|_{D\setminus\overline{\Omega}}$$

3. $z \mapsto u(z)$ satisfies the complexified Helmholtz equation in U,

 $(\overline{\Delta_z + k^2}) \ u(z) = 0,$

where $\Delta_z = \partial_{z_1}^2 + \partial_{z_2}^2$.

4. $u \circ F(x) \xrightarrow{|x| \to \infty} 0$ exponentially.

Representation of $\Delta_z u(z)$

Let u be an analytic function defined in a neighborhood of $\Gamma \subset \mathbb{C}^2$. Then, for $z \in \Gamma$,

 $\Delta_z u(z) = (\operatorname{div} H^T H \text{ grad} - m^T H \text{ grad}) [u \circ F] (F^{-1}(z)),$

where

•
$$H = (\underbrace{I + i(Da)}_{DF})^{-T} = \begin{pmatrix} 1 + i\frac{\partial a_1}{\partial x_1} & i\frac{\partial a_1}{\partial x_2} \\ i\frac{\partial a_2}{\partial x_1} & 1 + i\frac{\partial a_2}{\partial x_2} \end{pmatrix}^{-T}$$

• $m = \begin{pmatrix} \frac{\partial}{\partial x_1}(H)_{1,1} + \frac{\partial}{\partial x_2}(H)_{1,2} \\ \frac{\partial}{\partial x_1}(H)_{2,1} + \frac{\partial}{\partial x_2}(H)_{2,2} \end{pmatrix}$

Corollary

The "Bérenger equation" $[(\Delta_z + k^2) \cdot u(z)]|_{\Gamma} = 0$ assumes in \mathbb{R}^2 the form

(div $H^T H$ grad - $m^T H$ grad + k^2) $[u \circ F] = 0$. **Definition:** $\widetilde{\Delta} := \operatorname{div} H^T H$ grad - $m^T H$ grad Complexified analogue of the space $H^1_{rad}(\mathbb{R}^2 \setminus \Omega)$ $H^1_{(\delta)}(\mathbb{R}^2 \backslash \overline{\Omega}) := \{ u \in H^1(\mathbb{R}^2 \backslash \overline{\Omega}) \mid$ $\lim_{h(x)\longrightarrow\infty} e^{\delta\tau(h(x))} \left| u(x) \right| = \lim_{h(x)\longrightarrow\infty} e^{\delta\tau(h(x))} \left| \operatorname{grad} u(x) \right| = 0$ uniformly in \widehat{x} .

The full-space Bérenger problem

We want to find a function $u \in H^1_{(\delta)}(\mathbb{R}^2 \setminus \overline{\Omega})$ such that

1.
$$(\overline{\Delta} + k^2)u = 0$$
 in $\mathbb{R}^2 \setminus \overline{\Omega}$
2. $\frac{\partial u}{\partial n} \Big|_{\partial \Omega} = g \in H^{-1/2}(\partial \Omega)$

Existence and uniqueness theorem

The full-space Bérenger problem has a unique solution $u_{\mathbb{C}} \in H^1_{k-\epsilon}(\mathbb{R}^2 \setminus \overline{\Omega})$, where $\epsilon > 0$ is arbitrary. Furthermore we have

 $u_{\mathbb{C}}\left|_{D\setminus\overline{\Omega}}=u_{sc}\left|_{D\setminus\overline{\Omega}}\right.$

Part 3: Definition of the truncated Bérenger BVP

Definition: The layer of thickness $\rho > 0$ around D is defined by

 $L(\rho) := \left\{ x \in \mathbb{R}^2 \backslash \overline{D} \ | \ h(x) < \rho \right\}.$

We define further

 $\overline{D(\rho)} := D \cup \overline{L(\rho)}.$

The truncated Bérenger problem

We want to find a function $u_T \in H^1(D(\rho) \setminus \overline{\Omega})$ satisfying 1. $(\widetilde{\Delta} + k^2)u = 0$ in $D(\rho) \setminus \overline{\Omega}$ 2. $\frac{\partial u}{\partial n} \Big|_{\partial\Omega} = g \in H^{-1/2}(\partial\Omega)$ 3. $u \Big|_{\partial D(\rho)} = 0$

Part 4: Main theorem

For any wavenumber k > 0, there exists a positive constant $\rho_0(k)$ such that, for all $\rho \ge \rho_0(k)$, the truncated Bérenger problem (bounded) has a unique solution $u_T = u_T(\rho) \in H^1(D(\rho) \setminus \overline{\Omega}).$

Moreover, this solution converges exponentially to the solution u_{sc} of the initial scattering problem (unbounded) near Ω :

 $\lim_{\rho \to \infty} e^{(k-\epsilon)\tau(\rho)} \|u_{sc} - u_T(\rho)\|_{H^1(D(\rho)\setminus\overline{\Omega})} = 0 \text{ for all } \epsilon > 0.$

It could be so easy...

By linearity of the operator $(\tilde{\Delta} + k^2)$, we have for $\eta := u_{\mathbb{C}} - u_T$

1. $(\widetilde{\Delta} + k^2)\eta = 0$ in $D(\rho) \setminus \overline{\Omega}$ 2. $\frac{\partial \eta}{\partial n} |_{\partial \Omega} = 0$

3.
$$\eta \mid_{\partial D(\rho)} = u_{\mathbb{C}}$$

If we could show that

 $\|\eta\|_{H^1(D\setminus\overline{\Omega})} \le C \|u_{\mathbb{C}}\|_{H^{1/2}(\partial D(\rho))}, \quad C \text{ indep. of } \rho,$

the main theorem was proved, since

 $\|u_{\mathbb{C}}\|_{H^{1/2}(\partial D(\rho))} \to 0 \text{ as } \rho \to \infty.$

... but it isn't. \rightarrow Part 5: Outline of the proof of the Main theorem

Three steps:

- 1. Full-space Bérenger BVP \iff BVP (A) near Ω
- 2. Truncated Bérenger BVP \iff BVP (B) near Ω
- 3. BVP $(B) \longrightarrow$ BVP (A) if the layer thickness $\rho \longrightarrow \infty$ near Ω .

Since we know that the full-space Bérenger BVP \iff scattering BVP near Ω , the Main Theorem is then proved.

The idea behind step 1

Let $0 < \rho_1 < \rho_2$ and $D_j := D(\rho_j), \quad j = 1, 2.$ Find u with $(\Delta + k^2)u = 0$ in $D_2 \setminus \Omega$ and

 $rac{\partial u}{\partial n}|_{\partial\Omega} = g, \quad u|_{\partial D_2} = P(u|_{\partial D_1}),$

with the double surface operator $P = K_{\partial D_1, \partial D_2} (\frac{1}{2} + K_{\partial D_1})^{-1}$, $K_{-} \cdot c(\pi) = \pi \pi \int_{-\infty}^{\infty} d\Phi_{-}(\pi, \pi) dS(\pi) - \pi \int_{-\infty}^{\infty} \partial D$

Characterization of P

If for a function u we have

1. $(\Delta + k^2)u = 0$ in $\mathbb{R}^2 \setminus \overline{D_1}$ 2. $u \mid_{\partial D_1} = w$, $\implies Pw = u \mid_{\partial D_2}$.

The Theorem behind step 1

Assume that ρ_1 and ρ_2 are so chosen that k^2 is not the Dirichlet - eigenvalue of $-\Delta$ in $D_2 \setminus \overline{D}_1$.

The BVP $(\Delta + k^2)u = 0$ in $D_2 \setminus \Omega$ with

 $rac{\partial u}{\partial n}|_{\partial\Omega}=g, \quad u|_{\partial D_2}=P(u|_{\partial D_1})\,,$

has a unique solution u, and $u_{sc} \equiv u$ in D_2 .

The task of step 1

- Find $P_{\mathbb{C}}$ analogous to P for the full-space Bérenger problem.
- Prove the "Theorem behind step 1" with P replaced by $P_{\mathbb{C}}$.

Definition of the BVP (A)

Let the BVP (A) be defined by 1. $(\Delta + k^2)u = 0$ in $D_2 \setminus \overline{\Omega}$ 2. $\frac{\partial u}{\partial n}\Big|_{\partial\Omega} = g \in H^{-1/2}(\partial\Omega)$ 3. $u|_{\partial D_2} = P_{\mathbb{C}}(u|_{\partial D_1}),$ where $P_{\mathbb{C}} := \widetilde{K}_{(A),\partial D_1,\partial D_2}(\frac{1}{2} + \widetilde{K}_{(A),\partial D_1})^{-1}$, $\widetilde{K}_{(A),\partial D_1,\partial D_2}\left[\psi
ight](x):=\int_{\partial D_1}rac{\partial\Phi_{(A)}(x,y)}{\partial n(y)}\psi(y)dS(y),$ $(\widetilde{\Delta} + A + k^2)\widetilde{\Phi}_{(A)}(x, y) = -\delta(x - y)$ and $A = A(\epsilon) : L^2(D_1) \to L^2(D_1), \quad ||A|| < \epsilon,$ $\lim_{h(x)\to\infty} \sup_{y\in K\subset\mathbb{R}^2} e^{(k-\epsilon)\tau(h(x))} |D_x^{\alpha}\widetilde{\Phi}_{(A)}(x,y)| = 0, \quad |\alpha| \le 2.$

The Theorem of step 1

The BVP (A) has a unique solution u in $H^1(D_2 \setminus \overline{\Omega})$, and $u = u_{\mathbb{C}}$ in $D_2 \setminus \overline{\Omega}$.

Lemma

The BVP

1. $(\widetilde{\Delta} + k^2)u = 0$ in $\mathbb{R}^2 \setminus \overline{D}_1$ 2. $u \mid_{\partial D_1} = f \in H^{1/2}(\partial D_1)$

has a unique solution $u \in H^1_{(1-\epsilon)}(\mathbb{R}^2 \setminus \overline{D}_1)$ and it can be represented as $u = \widetilde{K}_{(A),\partial D_1,\mathbb{R}^2 \setminus \overline{D}_1}[\varphi]$, where φ is the unique solution of

 $\left(\frac{1}{2} + \widetilde{K}_{(A),\partial D_1}\right)[\varphi] = f.$

The Theorem of step 2

Let $\rho > \rho_2$. There exists an operator

 $P_{
ho}: H^{1/2}(\partial D_1) \longrightarrow H^{1/2}(\partial D_2)$

such that the truncated Bérenger problem is equivalent to the near-field BVP (B):

- 1. $(\widetilde{\Delta} + k^2)u = 0$ in $D(\rho) \setminus \overline{\Omega}$ 2. $\frac{\partial u}{\partial n} \Big|_{\partial \Omega} = g \in H^{1/2}(\partial \Omega)$
- 3. $u|_{\partial D_2} = P_{\rho}(u|_{\partial D_1}).$

Moreover, we have

$$\lim_{\rho \to \infty} e^{(k-\epsilon)\tau(\rho)} \|P_{\rho} - P_{\mathbb{C}}\| = 0 \text{ for all } \epsilon > 0.$$

Lemma

The BVP (C) 1. $(\widetilde{\Delta} + k^2)u = 0$ in $D(\rho)\setminus \overline{D}_1$ 2. $u \mid_{\partial D_1} = f \in H^{1/2}(\partial D_1)$ 3. $u \mid_{\partial D_{\rho}} = 0$

has a unique solution $u \in H^1(\overline{D}(\rho) \setminus \overline{D}_1)$.

Step 3 - The connection between (A) and (B)

Assume that $\widetilde{P} : H^{1/2}(\partial D_1) \longrightarrow H^{1/2}(\partial D_2)$ is an operator with the property

 $\| \widetilde{P} - P_{\mathbb{C}} \| < \epsilon.$

Consider the BVP (A) with $P_{\mathbb{C}}$ replaced by P. For $\epsilon > 0$ small enough, that modified BVP has a unique solution $\widetilde{u} \in H^1(\partial D_2 \setminus \overline{\Omega})$, and we have

 $\|u_{\mathbb{C}} - \widetilde{u}\|_{H^1(D_2 \setminus \overline{\Omega})} < C\epsilon$

for some positive constant C > 0.

Lemma

This BVP (D) is an "equivalent weak form of" the BVP (A)

1. $(\widetilde{\Delta} + k^2)u = Fu$ in $D_2 \setminus \overline{\Omega}$ 2. $\frac{\partial u}{\partial n} |_{\partial \Omega} = g \in H^{-1/2}(\partial \Omega)$ 3. $u |_{\partial D_2} = 0$, where $Fu = -(\widetilde{\Delta} + k^2)RP_{\mathbb{C}}(u |_{\partial D_1})$ and $R : H^{1/2}(\partial D_2) \to H^1(D_2 \setminus \overline{\Omega})$,

 $R(u|_{\partial D_2}) = u$

a right inverse of the trace mapping $u \mapsto u \mid_{\partial D_2}$.

Thank you for your attention!