
Analysis of PML for the
Helmholtz equation



What’s the physical situation?



Example

Let Ω represent an infinite cylinder in R3. We consider
how the magnetic field H = H(x, t) is scattered by the cylin-
der.



We assume that the magnetic field is parallel to the axis of the
cylinder.



With further assumptions, the scattered magnetic field can be
written as

H = u(r, φ)e−iwtez

• where (r, φ) are the polar coordinates in the plane,

• w > 0 the angular frequency,

• ez the direction of the axis of the cylinder.

Mathematical analysis of the situation

• Mathematical description?

• How to describe
”
the scattering“?



Answer (w.r.t. the Example)

For the amplitude u = u(r, φ) we have to solve:

1. (∆ + k2)u = 0 in R2 \ Ω̄,

2. ∂u
∂n
|∂Ω = g,

3. limr→∞ r
1/2(∂u

∂r
− iku) = 0 uniformly in x̂,

where k2 = w2ε0µ0 > 0 and

r = |x| and x̂ = x/r, r 6= 0.

the equation (3) is called the

”
Sommerfeld radiation condition at infinity“.



Difficulties

Since Ω is bounded, R2\Ω̄ is unbounded.

Solution: The PML - method.

Overview

1. Scattering BVP −→ usc.

2. Full-space Bérenger BVP −→ uC with uC |D = usc |D .

3. Truncated Bérenger BVP −→ ũC(ρ), bounded domain.

4. Main Theorem: ũB(ρ)
ρ→∞→ usc near Ω.

5. Outline of the proof.



Part 1: The scattering BVP

1. (∆ + k2)u = 0 in R2 \Ω̄
2. ∂u

∂n
|∂Ω = g ∈ H−1/2(∂Ω)

3. limr→∞ r
1/2(∂u

∂r
− iku) = 0 uniformly in x̂

Note: (3) =⇒ u(r, ϕ)
r→∞→ C1 e

ikr+C2ϕ



Existence Theorem

The scattering BVP has a unique (weak) solution
u ∈ H1

rad(R2\Ω̄), where

H1
rad(R2\Ω̄) = {u ; u ∈ H1(BR(0)\Ω̄) for all R > 0

and u satisfies the Sommerfeld radiation condition }.

This unique solution of the scattering problem is denoted
by usc.



Part 2: The Construction

We introduce a strictly convex set D ⊂ R2, such that

1. Ω̄ ⊂ D,

2. D has a C2-boundary.



Definition of h

Let x ∈ R2\D. Then we define

• h(x) := dist(x, ∂D) ≥ 0 and

• p(x) ∈ ∂D such that h(x) = |x− p(x)|.
With x = p(x) + h(x) · n(x).



Definition of τ

Further, let τ : [0,∞) −→ [0,∞) be a C2-function with:

• the derivative τ ′ is strictly increasing,

• lims→∞ τ
′(s) = ∞

• τ (0) = τ ′(0+) = τ ′′(0+) = 0

• lims→∞ e
−ε·τ(s)τ ′(s) = lims→∞ e

−ε·τ(s)τ ′′(s) = 0
for all ε > 0.



Definition of the function a

We define a function a : R2 −→ R2 by setting

a(x) :=

{
0 if x ∈ D
τ (h(x)) · n(x) if x ∈ R2\D



Definition of the stretching function F

We define the function F : R2 −→ C2 by setting

F (x) := x + i · a(x).



Definition of Γ

Γ := F (R2) = {z ∈ C2 ; z = x + i · a(x), x ∈ R2}



The fundamental solution of the Helmholtz equation

Φ(x, y) = i
4 ·H

(1)
0 (k · |x− y|)

is the fundamental solution for the Helmholtz equati-
on, i.e.

(∆y + k2)Φ(x, y) = δ(x).

The Hankel function of the first kind:

H
(1)
0 : C −→ C, z 7−→ 1

iπ

∫ ∞
0

e(z/2)(t−1/t)

t
dt

with H
(1)
0 (x) ≈

√
2

πx
ei(x−π/4) for x ∈ R and x� 1.



Representation of usc

Definition:

• S∂Ω,Rn\Ω [ϕ] (x) :=
∫

∂Ω Φ(x, y)ϕ(y)dS(y)

- Single layer potential operator

• K∂Ω,Rn\Ω [ψ] (x) :=
∫

∂Ω
∂Φ(x,y)
∂n(y) ψ(y)dS(y)

- Double layer potential operator

Representation:

usc = S∂Ω,Rn\Ω [ϕ] +K∂Ω,Rn\Ω [ψ]

with some densities ϕ and ψ.



Complexification of the function |·|

The function ρ(x) := |x| for x ∈ R2 allows an analytic
extension to G ⊂ C2, where

G := {z = (z1, z2) ∈ C2 ; z2 = z2
1 + z2

2 ∈ C2\(−∞, 0)}

This extension is denoted by ρ again and we have:

ρ : G −→ {z ∈ C ; <z > 0}



Neighborhood of Γ

Lemma: The manifold Γ\Ω̄ ⊂ C2 has a neighborhood
U ⊂ C2 such that, for all y ∈ ∂Ω and z ∈ U we have
z − y ∈ G, i.e.

(z1 − y1)
2 + (z2 − y2)

2 /∈ R−



Extension of the fundamental solution Φ

Lemma: The Hankel function H
(1)
0 is analytic in

{z ∈ C |<z > 0}.

Definition:

Φ(z, ζ) := i
4H

(1)
0 (k · ρ(z − ζ)), z − ζ ∈ G.

Note:

”
Extended Φ −→ extended S and K −→ extended usc“



Extensions

Analytic extensions of the Operators S and K:

• S∂Ω,U [ϕ] (z) :=
∫

∂Ω Φ(z, y)ϕ(y)dS(y), z ∈ U

• K∂Ω,U [ψ] (z) :=
∫

∂Ω
∂Φ(z,y)
∂n(y) ψ(y)dS(y), z ∈ U

Definition: u : U −→ R, with

u(z) := S∂Ω,U [ϕ] (z) +K∂Ω,U [ψ] (z)



Properties of the function u = u(z)

1. z 7−→ u(z) is C2-analytic in U .

2. u(.)
∣∣
D\Ω = usc

∣∣
D\Ω .

3. z 7−→ u(z) satisfies the complexified Helmholtz equation
in U ,

(∆z + k2) u(z) = 0,

where ∆z = ∂2
z1

+ ∂2
z2
.

4. u ◦ F (x)
|x|→∞→ 0 exponentially.



Representation of ∆zu(z)

Let u be an analytic function defined in a neighborhood
of Γ ⊂ C2. Then, for z ∈ Γ,

∆zu(z) = (div HTH grad - mTH grad) [u ◦ F ] (F−1(z)),

where

• H = (I + i(Da)︸ ︷︷ ︸
DF

)−T =

(
1 + i∂a1

∂x1
i∂a1

∂x2

i∂a2

∂x1
1 + i∂a2

∂x2

)−T

• m =

(
∂

∂x1
(H)1,1 + ∂

∂x2
(H)1,2

∂
∂x1

(H)2,1 + ∂
∂x2

(H)2,2

)



Corollary

The
”
Bérenger equation“ [(∆z + k2) · u(z)] |Γ = 0 assumes

in R2 the form

(div HTH grad - mTH grad + k2) [u ◦ F ] = 0.

Definition: ∆̃ := div HTH grad - mTH grad

Complexified analogue of the space H1
rad(R2\Ω)

H1
(δ)(R2\Ω) := {u ∈ H1(R2\Ω) |

limh(x)−→∞ e
δτ(h(x))

∣∣u(x)
∣∣= limh(x)−→∞ e

δτ(h(x)) | gradu(x) |= 0

uniformly in x̂}.



The full-space Bérenger problem

We want to find a function u ∈ H1
(δ)(R2\Ω) such that

1. (∆̃ + k2)u = 0 in R2\Ω
2. ∂u

∂n

∣∣
∂Ω = g ∈ H−1/2(∂Ω)

Existence and uniqueness theorem

The full-space Bérenger problem has a unique solution
uC ∈ H1

k−ε(R2\Ω), where ε > 0 is arbitrary. Furthermore we
have

uC
∣∣
D\Ω = usc

∣∣
D\Ω .



Part 3: Definition of the truncated Bérenger BVP

Definition: The layer of thickness ρ > 0 around D is
defined by

L(ρ) :=
{
x ∈ R2\D | h(x) < ρ}.

We define further

D(ρ) := D ∪ L(ρ).



The truncated Bérenger problem

We want to find a function uT ∈ H1(D(ρ)\Ω) satisfying

1. (∆̃ + k2)u = 0 in D(ρ)\Ω
2. ∂u

∂n

∣∣
∂Ω = g ∈ H−1/2(∂Ω)

3. u
∣∣
∂D(ρ) = 0



Part 4: Main theorem

For any wavenumber k > 0, there exists a positive con-
stant ρ0(k) such that, for all ρ ≥ ρ0(k), the trunca-
ted Bérenger problem (bounded) has a unique solution

uT = uT (ρ) ∈ H1(D(ρ)\Ω).

Moreover, this solution converges exponentially to the so-
lution usc of the initial scattering problem(unbounded) near Ω:

limρ−→∞ e
(k−ε)τ(ρ) ‖usc − uT (ρ)‖H1(D(ρ)\Ω) = 0 for all ε > 0.



It could be so easy...

By linearity of the operator (∆̃+k2), we have for η := uC−uT

1. (∆̃ + k2)η = 0 in D(ρ)\Ω

2. ∂η
∂n
|∂Ω = 0

3. η
∣∣
∂D(ρ) = uC

If we could show that∥∥η ∥∥
H1(D\Ω) ≤ C

∥∥uC
∥∥

H1/2(∂D(ρ)) , C indep. of ρ,

the main theorem was proved, since∥∥uC
∥∥

H1/2(∂D(ρ)) → 0 as ρ→∞.



... but it isn’t. →
Part 5: Outline of the proof of the Main theorem

Three steps:

1. Full-space Bérenger BVP ⇐⇒ BVP (A) near Ω

2. Truncated Bérenger BVP ⇐⇒ BVP (B) near Ω

3. BVP (B) −→ BVP (A) if the layer thickness ρ −→ ∞
near Ω.

Since we know that the full-space Bérenger BVP ⇐⇒ scatte-
ring BVP near Ω, the Main Theorem is then proved.



The idea behind step 1

Let 0 < ρ1 < ρ2 and Dj := D(ρj), j = 1, 2.
Find u with (∆ + k2)u = 0 in D2\Ω and

∂u
∂n
|∂Ω = g, u |∂D2

= P (u |∂D1
) ,

with the double surface operator P = K∂D1,∂D2
(1

2 +K∂D1
)−1,

K∂D1
ϕ(x) = p.v.

∫
∂D1

∂Φ
∂n(y)(x, y)dS(y), x ∈ ∂D1.



Characterization of P

If for a function u we have

1. (∆ + k2)u = 0 in R2\D1

2. u |∂D1
= w,

=⇒ Pw = u |∂D2
.



The Theorem behind step 1

Assume that ρ1 and ρ2 are so chosen that k2 is not the
Dirichlet - eigenvalue of −∆ in D2\D1.

The BVP (∆ + k2)u = 0 in D2\Ω with

∂u
∂n
|∂Ω = g, u |∂D2

= P (u |∂D1
) ,

has a unique solution u, and usc ≡ u in D2.

The task of step 1

• Find PC analogous to P for the full-space Bérenger pro-
blem.

• Prove the
”
Theorem behind step 1“ with P replaced by PC.



Definition of the BVP (A)

Let the BVP (A) be defined by

1. (∆̃ + k2)u = 0 in D2\Ω
2. ∂u

∂n

∣∣
∂Ω = g ∈ H−1/2(∂Ω)

3. u |∂D2
= PC(u |∂D1

) ,

where PC := K̃(A),∂D1,∂D2
(1

2 + K̃(A),∂D1
)−1,

K̃(A),∂D1,∂D2
[ψ] (x) :=

∫
∂D1

∂Φ̃(A)(x,y)
∂n(y) ψ(y)dS(y),

(∆̃ + A + k2)Φ̃(A)(x, y) = −δ(x− y) and

A = A(ε) : L2(D1) → L2(D1), ‖A ‖< ε ,

limh(x)→∞ supy∈K⊂R2 e(k−ε)τ(h(x))|Dα
x Φ̃(A)(x, y) |= 0, |α |≤ 2.



The Theorem of step 1

The BVP (A) has a unique solution u in H1(D2\Ω), and

u = uC in D2\Ω.

Lemma

The BVP

1. (∆̃ + k2)u = 0 in R2\D1

2. u
∣∣
∂D1

= f ∈ H1/2(∂D1)

has a unique solution u ∈ H1
(1−ε)(R2\D1) and it can be

represented as u = K̃(A),∂D1,R2\D1
[ϕ], where ϕ is the unique

solution of

(1
2 + K̃(A),∂D1

) [ϕ] = f.



The Theorem of step 2

Let ρ > ρ2. There exists an operator

Pρ : H1/2(∂D1) −→ H1/2(∂D2)

such that the truncated Bérenger problem is equivalent to
the near-field BVP (B):

1. (∆̃ + k2)u = 0 in D(ρ)\Ω
2. ∂u

∂n

∣∣
∂Ω = g ∈ H1/2(∂Ω)

3. u |∂D2
= Pρ(u |∂D1

) .

Moreover, we have

limρ→∞ e
(k−ε)τ(ρ) ‖Pρ − PC ‖= 0 for all ε > 0.



Lemma

The BVP (C)

1. (∆̃ + k2)u = 0 in D(ρ)\D1

2. u
∣∣
∂D1

= f ∈ H1/2(∂D1)

3. u
∣∣
∂Dρ

= 0

has a unique solution u ∈ H1(D(ρ)\D1).



Step 3 - The connection between (A) and (B)

Assume that P̃ : H1/2(∂D1) −→ H1/2(∂D2) is an opera-
tor with the property

‖ P̃ − PC ‖< ε.

Consider the BVP (A) with PC replaced by P̃ . For ε > 0
small enough, that modified BVP has a unique solution
ũ ∈ H1(∂D2\Ω), and we have∥∥uC − ũ

∥∥
H1(D2\Ω) < Cε

for some positive constant C > 0.



Lemma

This BVP (D) is an
”
equivalent weak form of“ the BVP

(A)

1. (∆̃ + k2)u = Fu in D2\Ω
2. ∂u

∂n

∣∣
∂Ω = g ∈ H−1/2(∂Ω)

3. u |∂D2
= 0,

where Fu = −(∆̃ + k2)RPC(u |∂D1
) and

R : H1/2(∂D2) → H1(D2\Ω),

R(u |∂D2
) = u

a right inverse of the trace mapping u 7→ u |∂D2
.



Thank you for your attention!


