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Introduction

Non-Maxwellian PML using complex coordinate stretching

xi 7−→ x̃i =

∫ xi

0

si(x̂
i)dx̂i

with
si(x̂

i) = ai(x̂
i) + iσi(x̂

i)/ω

→ ∇̃ =







∂/∂x̃1

∂/∂x̃2

∂/∂x̃3






=







1
s1

∂/∂x1

1
s2

∂/∂x2

1
s3

∂/∂x3







→ Modified Maxwell equation (frequency domain):

∇̃ · ε ~E = 0

∇̃ · µ ~H = 0

∇̃ × ~E = −iωµ ~H

∇̃ × ~H = iωε ~E
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We have seen that this complex coordinate stretching

• offers a PML with great accuracy.

• can be easily used for 1, 2 or 3 dimensions.

• involves a modification of Maxwell’s equations!
⇒ can’t be implemented easily in existing FEM code.
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We have seen that this complex coordinate stretching

• offers a PML with great accuracy.

• can be easily used for 1, 2 or 3 dimensions.

• involves a modification of Maxwell’s equations!
⇒ can’t be implemented easily in existing FEM code.

Solution: use material constants ε and µ to provide the needed additional degrees
of freedom.

⇒ Maxwellian PML
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Maxwellian PML

Maxwell’s equations in time harmonic form:

∇ · ε̄ ~E = 0

∇ · µ̄ ~H = 0

∇× ~E = −iωµ ~H − σM
~H

∇× ~H = iωε ~E + σE
~E

with
σM : magnetic conductivity σE : electric conductivity

ε̄ = ε0







εx +
σx

E

iω
0 0

0 εy +
σ

y

E

iω
0

0 0 εz +
σz

E

iω







µ̄ = µ0







µx +
σx

M

iω
0 0

0 µy +
σ

y

M

iω
0

0 0 µz +
σz

M

iω
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Nessecary condition for a PML:

Impedance matching : Z =
√

µ
ε

= Z0 =
√

µ0

ε0

⇒ µ̄

µ0
=

ε̄

ε0
= Λ =







a 0 0

0 b 0

0 0 c







with some complex numbers a,b,c
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Nessecary condition for a PML:

Impedance matching : Z =
√

µ
ε

= Z0 =
√

µ0

ε0

⇒ µ̄

µ0
=

ε̄

ε0
= Λ =







a 0 0

0 b 0

0 0 c







with some complex numbers a,b,c

⇒ Maxwell’s equations reduce to

∇ · Λ ~E = 0

∇ · Λ ~H = 0

∇× ~E = −iωµ0Λ ~H

∇× ~H = iωε0Λ ~E
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This equations lead to plane waves

~E(~r, t) = ~Ee−i(~k·~r−ωt)

~H(~r, t) = ~He−i(~k·~r−ωt)

with the dispersion relation

k2
x

bc
+

k2
y

ac
+

k2
z

ab
= k2

0 = ω2µ0ε0,

which is the equation of an ellipsoid

kx = k0

√
bc sin θ cos φ

ky = k0

√
ac sin θ sin φ

kz = k0

√
ab cos θ
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Example

x

z

θ
i

θ
r

θ
t

µ
0, 

ε
0

µ,ε

free space PML

E
i
, H

i

E
r
, H

r

E
t
, H

t

Dispersion relation:

kx = k0

√
bc sin θ

ky = 0

kz = k0

√
ab cos θ

~Ei, ~Hi ∝ e−ik0(sin θix+cos θiz)

~Er, ~Hr ∝ r · e−ik0(sin θrx+cos θrz)

~Et, ~Ht ∝ t · e−ik0(
√

bc sin θtx+
√

ab cos θtz)
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Example

x
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θ
i

θ
r

θ
t
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0, 

ε
0

µ,ε

free space PML

E
i
, H

i
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r
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E
t
, H

t

Dispersion relation:

kx = k0

√
bc sin θ

ky = 0

kz = k0

√
ab cos θ

~Ei, ~Hi ∝ e−ik0(sin θix+cos θiz)

~Er, ~Hr ∝ r · e−ik0(sin θrx+cos θrz)

~Et, ~Ht ∝ t · e−ik0(
√

bc sin θtx+
√

ab cos θtz)

Continuity of the solutions on interface: Ei + Er = Et and Hi + Hr = Ht

Phase matching yields a generalization of Snell’s law

sin θi = sin θr =
√

bc sin θt
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TM and TE waves
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TM and TE waves

x

z

θ
i

θ
r

θ
t
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i

E
r
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t

H
i

H
r

H
t

θ
i

θ
r

θ
t

E
i

E
r

E
t

H
i

H
r H

t

TM TE

Reflection coefficients (using continuity of the solutions on the interface):

rTM =

√

b
a

cos θt − cos θi

cos θi +
√

b
a

cos θt

rTE =
cos θi −

√

b
a

cos θt

cos θi +
√

b
a

cos θt
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Imposing √
bc = 1 and a = b

the interface will be perfectly reflectionless for any frequency, angle of incidence
and polarization.
We now write a = b = 1

c
= α + iβ

~Et(~r, t) = ~Ee−k0β cos θtze−ik0(sin θtx+α cos θtz)eiωt

⇒ α ↔ wave length in absorber
β ↔ rate of decay in absorber

penetration depth δ = 1
k0β cos θt
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Physical Interpretation

optical axis

k-surface

interface

• uniaxial crystal

• optical axis perpendicular to
interface

• electric conductivity σE = ωε0S

• magnetic conductivity σM = ωµ0S

S =







β 0 0

0 β 0

0 0 − β
α2+β2







z - component is negative → Jz = − β
α2+β2 Ez

⇒ dependent sources in the material!
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Summary Maxwellian PML

We now have found a PML formulation

• that uses an anisotropic material as an absorbing layer.

• that is similar but not equal to the techniques showed before.

• that is easy to implement in existing frequency-domain code.

Construction of PML - Mark Fischer – p. 12



Summary Maxwellian PML

We now have found a PML formulation

• that uses an anisotropic material as an absorbing layer.

• that is similar but not equal to the techniques showed before.

• that is easy to implement in existing frequency-domain code.

Problems and Questions remaining:

• Generalization to other geometries (e.g. cylindrical, spherical coordinates)?

• Link between the 2 PML formulations?

• Are there other PML formulations?
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Summary Maxwellian PML

We now have found a PML formulation

• that uses an anisotropic material as an absorbing layer.

• that is similar but not equal to the techniques showed before.

• that is easy to implement in existing frequency-domain code.

Problems and Questions remaining:

• Generalization to other geometries (e.g. cylindrical, spherical coordinates)?

• Link between the 2 PML formulations?

• Are there other PML formulations?

Next Step:
Electromagnetics with differential forms
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PML using differential forms

Non-Maxwellian PML formulation:

xi 7−→ x̃i =

∫ xi

0

si(x̂
i)dx̂i

with
si(x̂

i) = ai(x̂
i) + iσi(x̂

i)/ω

Re-Interpretation:

mapping on complex coordinates → change of metric

gij = δij 7→ g̃ij = gkl
∂x̃k

∂xi

∂x̃l

∂xj
=







(s1)
2 0 0

0 (s2)
2 0

0 0 (s3)
2
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General Case

• Consider the general orthogonal curvilinear case (u1, u2, u3)

• gij is given in terms of the Lamé coefficients hi: gij = h2
i (u

1, u2, u3) · δij

• Choose u3 to be analytically continued: u3 7→ ũ3 =
∫ u3

0
s(λ)dλ

→ g̃ij =







(h̃1)
2 0 0

0 (h̃2)
2 0

0 0 (h̃3)
2







with h̃1/2 = h1/2(u
1, u2, ũ3) and h̃3 = sh3(u

1, u2, ũ3).
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Mapping forms to vectors

Given a metric gij = (hi)
2 · δij there is a natural isomorphism mapping

• 1-forms to vectors

Ω = Ωidui gij7−→ ~Ω =
Ωi

hi
~ui

• 2-forms to axial vectors

Φ = Φidu[i+1] ∧ du[i+2] gij7−→ ~Φ =
Φi

h[i+1]h[i+2]

~ui

with ~ui the unit vector in ui direction and [i] ≡ i mod 3 for i 6= 3 and [3] = 3.
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Maxwell’s equations

Maxwell’s Equations using differential forms (no sources!)

dE = iωB

dH = −iωD

dD = 0

dB = 0

• E,H : el., magn. field intensity 1-forms

• D,B : el., magn. flux density 2-forms

• d : exterior derivative, metric independent

d acts

{

on 1-forms (=̂vectors) : curl

on 2-forms (=̂axial vectors) : div
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Constitutive Parameters

For differential forms, the constitutive parameters are given in terms of Hodge star
operators:

D = ?eE

B = ?hH

The Hodge Star operator

• establishes in the 3D case a natural isomorphism between the 1-forms E, H
and the 2-forms D, B.

• depends on the metric

• for the euclidean metric is given though ?dx = dydz, ?dy = dxdz and
?dz = dxdy.
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Expressing the electric and magnetic 1-forms in terms of (u1, u2, u3)

E = Eihidui H = Hihidui

The flux 2-forms become

D = ?e(Eihidui) =
∑

j

εijEjh[i+1]h[i+2]du[i+1] ∧ du[i+2]

B = ?h(Hihidui) =
∑

j

µijHjh[i+1]h[i+2]du[i+1] ∧ du[i+2]

NB: the star operator depends on the metric!
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Change of metric

Maxwell’s equations under a change on the metric

dẼ = iωB̃

dH̃ = −iωD̃

dD̃ = 0

dB̃ = 0



















same as before.

D̃ = ?̃eẼ

B̃ = ?̃hH̃

}

modified operators ?̃e/h defined by new metric.

• The PML in the diff. forms language is unique and unifies the various PML
formulations.

• The different formulations can be derived by a simple choice on how to map
the forms to vector quantities.

Construction of PML - Mark Fischer – p. 19



The Maxwellian PML Formulation

Map from forms to corresponding dual vector quantities governed by original
metric tensor (gij):

Ẽ = Ẽih̃idui (gij)
→ ~Em = Em

i ~ui =
h̃i

hi
Ẽi~u

i

D̃
(gij)
→ ~Dm = Dm

i ~ui =
∑

j

h̃kh̃l

hkhl
εijẼj~u

i

Modified constitutive tensors are given through

~Dm = εPML · ~Em

with

(εPML)ij =
h̃[i+1]h̃[i+2]

h[i+1]h[i+2]

εij
hj

h̃j

Construction of PML - Mark Fischer – p. 20



Example

free space:

h1 = 1

h2 = 1

h3 = 1

θ
i

θ
r

θ
t

x

z

PMLfree space

z 7→ z̃ =
∫ z

0
s(λ)dλ

Inside PML:

h̃1 = 1

h̃2 = 1

h̃3 = s(z)

εij = ε0 · δij ⇒ (εPML)ii =
h̃[i+1]h̃[i+2]

h[i+1]h[i+2]

ε0
hi

h̃i
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Example

free space:

h1 = 1

h2 = 1

h3 = 1

θ
i

θ
r

θ
t

x

z

PMLfree space

z 7→ z̃ =
∫ z

0
s(λ)dλ

Inside PML:

h̃1 = 1

h̃2 = 1

h̃3 = s(z)

εij = ε0 · δij ⇒ (εPML)ii =
h̃[i+1]h̃[i+2]

h[i+1]h[i+2]

ε0
hi

h̃i

⇒ εPML = ε0







s(z) 0 0

0 s(z) 0

0 0 1
s(z)







In accordance with the result derived before!
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Non-Maxwellian PML Formulation

Map from forms to corresponding dual vector quantities governed by modified,
complex metric tensor (g̃ij):

Ẽ = Ẽih̃idui (g̃ij)
→ ~Ec = Ec

i ~ui = Ẽi~u
i

D̃
(g̃ij)
→ ~Dc = Dc

i ~u
i =

∑

j

εijẼj~u
i

In contrary to the Maxwellian formulation, we obtain that

• the constitutive relations stay the same: ~Dc = ε ~Ec and ~Bc = µ ~Hc

• Maxwell’s equations are modified to add additional degrees of freedom. In
the Cartesian case, we obtain

∇̃ · ε ~E = 0 ∇̃ × ~E = −iωµ ~H

∇̃ · µ ~H = 0 ∇̃ × ~H = iωε ~E
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New Classes of PML

Other choices of metrics (ĝij) are also possible: e.g. hybridizations:

• (ĝij) = α(gij) + β(g̃ij)

• (ĝij) =
∑3

k=1(gik)α(g̃kj)
β

The second choice leads to

~E(α,β) = E
(α,β)
i ~ui =

h̃1−β
i

hα
i

Ẽi~u
i

~D(α,β) = D
(α,β)
i ~ui =

∑

j

h̃1−β
[i+1]h̃

1−β
[i+2]

hα
[i+1]h

α
[i+2]

εijẼj~u
i

and a permittivity

ε
(α,β)
ij =

h̃1−β
[i+1]h̃

1−β
[i+2]

hα
[i+1]h

α
[i+2]

εij
hα

j

h̃1−β
j
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Summary

E H D B

E
m

H
m

D
m

B
m

Maxwellian PML

E  H  D  B

E  H  D  B
~   ~  ~  ~

non-Maxwellian,
complex space PML

E
c
H

c
D

c
B

c

[gij]Original Maxwellian fields

[gij]

[gij]

[gij]

~

[gij]
~

PML: change
on the metric

vectors forms

E H D B

Others PML’s

[gij]
^

(isomorphisms)

(differing by metric factors) (unique)

(α,β)(α,β)(α,β)(α,β)
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Conclusion

1
• Change of variables → change of constitutive

parameters

• No change on Maxwell’s equations!

• tedious calculation

2

Differential forms provide

• a method independent of the field equations.

• an elegant way to generalize a PML for different
geometries.

• a unique formulation for a PML.
(different formulations correspond to different mappings)
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