Construction of PML

Mark Fischer

Contents

Introduction

- Non-Maxwellian PML

Maxwellian PML

- Anisotropic absorber as a PML

PML using differential forms

- Maxwell's equations in differential forms formulation
- Equivalence of Maxwellian and non-Maxwellian PML's
- New PML formulations

Introduction

Non-Maxwellian PML using complex coordinate stretching

$$
x^{i} \longmapsto \tilde{x}^{i}=\int_{0}^{x^{i}} s_{i}\left(\hat{x}^{i}\right) d \hat{x}^{i}
$$

with

$$
\begin{gathered}
s_{i}\left(\hat{x}^{i}\right)=a_{i}\left(\hat{x}^{i}\right)+i \sigma_{i}\left(\hat{x}^{i}\right) / \omega \\
\rightarrow \tilde{\nabla}=\left(\begin{array}{c}
\partial / \partial \tilde{x}^{1} \\
\partial / \partial \tilde{x}^{2} \\
\partial / \partial \tilde{x}^{3}
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{s_{1}} \partial / \partial x^{1} \\
\frac{1}{s_{2}} \partial / \partial x^{2} \\
\frac{1}{s_{3}} \partial / \partial x^{3}
\end{array}\right)
\end{gathered}
$$

\rightarrow Modified Maxwell equation (frequency domain):

$$
\begin{aligned}
\tilde{\nabla} \cdot \varepsilon \vec{E} & =0 \\
\tilde{\nabla} \cdot \mu \vec{H} & =0 \\
\tilde{\nabla} \times \vec{E} & =-i \omega \mu \vec{H} \\
\tilde{\nabla} \times \vec{H} & =i \omega \varepsilon \vec{E}
\end{aligned}
$$

We have seen that this complex coordinate stretching

- offers a PML with great accuracy.
- can be easily used for 1,2 or 3 dimensions.
- involves a modification of Maxwell's equations!
\Rightarrow can't be implemented easily in existing FEM code.

We have seen that this complex coordinate stretching

- offers a PML with great accuracy.
- can be easily used for 1,2 or 3 dimensions.
- involves a modification of Maxwell's equations! \Rightarrow can't be implemented easily in existing FEM code.

Solution: use material constants ε and μ to provide the needed additional degrees of freedom.

$$
\Rightarrow \text { Maxwellian PML }
$$

Maxwellian PML

Maxwell's equations in time harmonic form:

$$
\begin{aligned}
\nabla \cdot \vec{\varepsilon} \vec{E} & =0 \\
\nabla \cdot \vec{\mu} \vec{H} & =0 \\
\nabla \times \vec{E} & =-i \omega \mu \vec{H}-\sigma_{M} \vec{H} \\
\nabla \times \vec{H} & =i \omega \varepsilon \vec{E}+\sigma_{E} \vec{E}
\end{aligned}
$$

with
$\sigma_{M}:$ magnetic conductivity $\quad \sigma_{E}$: electric conductivity

$$
\begin{aligned}
& \bar{\varepsilon}=\varepsilon_{0}\left(\begin{array}{ccc}
\varepsilon_{x}+\frac{\sigma_{T}^{x}}{i \omega} & 0 & 0 \\
0 & \varepsilon_{y}+\frac{\sigma_{E}^{y}}{i \omega} & 0 \\
0 & 0 & \varepsilon_{z}+\frac{\sigma_{E}^{z}}{i \omega}
\end{array}\right) \\
& \bar{\mu}=\mu_{0}\left(\begin{array}{ccc}
\mu_{x}+\frac{\sigma_{M}^{x}}{i \omega} & 0 & 0 \\
0 & \mu_{y}+\frac{\sigma_{M}^{y}}{i \omega} & 0 \\
0 & 0 & \mu_{z}+\frac{\sigma_{M}^{z}}{i \omega}
\end{array}\right)
\end{aligned}
$$

Nessecary condition for a PML:
Impedance matching: $Z=\sqrt{\frac{\mu}{\varepsilon}}=Z_{0}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}$

$$
\Rightarrow \frac{\bar{\mu}}{\mu_{0}}=\frac{\bar{\varepsilon}}{\varepsilon_{0}}=\Lambda=\left(\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right)
$$

with some complex numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}$

Nessecary condition for a PML:
Impedance matching : $Z=\sqrt{\frac{\mu}{\varepsilon}}=Z_{0}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}$

$$
\Rightarrow \frac{\bar{\mu}}{\mu_{0}}=\frac{\bar{\varepsilon}}{\varepsilon_{0}}=\Lambda=\left(\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right)
$$

with some complex numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}$
\Rightarrow Maxwell's equations reduce to

$$
\begin{aligned}
\nabla \cdot \Lambda \vec{E} & =0 \\
\nabla \cdot \Lambda \vec{H} & =0 \\
\nabla \times \vec{E} & =-i \omega \mu_{0} \Lambda \vec{H} \\
\nabla \times \vec{H} & =i \omega \varepsilon_{0} \Lambda \vec{E}
\end{aligned}
$$

This equations lead to plane waves

$$
\begin{aligned}
\vec{E}(\vec{r}, t) & =\overrightarrow{\mathcal{E}} e^{-i(\vec{k} \cdot \vec{r}-\omega t)} \\
\vec{H}(\vec{r}, t) & =\overrightarrow{\mathcal{H}} e^{-i(\vec{k} \cdot \vec{r}-\omega t)}
\end{aligned}
$$

with the dispersion relation

$$
\frac{k_{x}^{2}}{b c}+\frac{k_{y}^{2}}{a c}+\frac{k_{z}^{2}}{a b}=k_{0}^{2}=\omega^{2} \mu_{0} \varepsilon_{0},
$$

which is the equation of an ellipsoid

$$
\begin{aligned}
k_{x} & =k_{0} \sqrt{b c} \sin \theta \cos \phi \\
k_{y} & =k_{0} \sqrt{a c} \sin \theta \sin \phi \\
k_{z} & =k_{0} \sqrt{a b} \cos \theta
\end{aligned}
$$

Example

Example

Dispersion relation:

$$
\begin{aligned}
k_{x} & =k_{0} \sqrt{b c} \sin \theta \\
k_{y} & =0 \\
k_{z} & =k_{0} \sqrt{a b} \cos \theta
\end{aligned}
$$

$$
\begin{aligned}
\vec{E}_{i}, \vec{H}_{i} & \propto e^{-i k_{0}\left(\sin \theta_{i} x+\cos \theta_{i} z\right)} \\
\vec{E}_{r}, \vec{H}_{r} & \propto r \cdot e^{-i k_{0}\left(\sin \theta_{r} x+\cos \theta_{r} z\right)} \\
\vec{E}_{t}, \vec{H}_{t} & \propto t \cdot e^{-i k_{0}\left(\sqrt{b c} \sin \theta_{t} x+\sqrt{a b} \cos \theta_{t} z\right)}
\end{aligned}
$$

Continuity of the solutions on interface: $E_{i}+E_{r}=E_{t}$ and $H_{i}+H_{r}=H_{t}$ Phase matching yields a generalization of Snell's law

$$
\sin \theta_{i}=\sin \theta_{r}=\sqrt{b c} \sin \theta_{t}
$$

TM and TE waves

TM and TE waves

Reflection coefficients (using continuity of the solutions on the interface):

$$
r^{T M}=\frac{\sqrt{\frac{b}{a}} \cos \theta_{t}-\cos \theta_{i}}{\cos \theta_{i}+\sqrt{\frac{b}{a}} \cos \theta_{t}} \quad r^{T E}=\frac{\cos \theta_{i}-\sqrt{\frac{b}{a}} \cos \theta_{t}}{\cos \theta_{i}+\sqrt{\frac{b}{a}} \cos \theta_{t}}
$$

Imposing

$$
\sqrt{b c}=1 \quad \text { and } \quad a=b
$$

the interface will be perfectly reflectionless for any frequency, angle of incidence and polarization.
We now write $a=b=\frac{1}{c}=\alpha+i \beta$

$$
\begin{gathered}
\vec{E}_{t}(\vec{r}, t)=\overrightarrow{\mathcal{E}} e^{-k_{0} \beta \cos \theta_{t} z} e^{-i k_{0}\left(\sin \theta_{t} x+\alpha \cos \theta_{t} z\right)} e^{i \omega t} \\
\Rightarrow \begin{array}{c}
\alpha \\
\beta
\end{array} \text { wave length in absorber } \\
\beta \text { rate of decay in absorber }
\end{gathered}
$$

$$
\text { penetration depth } \delta=\frac{1}{k_{0} \beta \cos \theta_{t}}
$$

Physical Interpretation

- uniaxial crystal
- optical axis perpendicular to interface
- electric conductivity $\sigma_{E}=\omega \varepsilon_{0} S$
- magnetic conductivity $\sigma_{M}=\omega \mu_{0} S$

$$
S=\left(\begin{array}{ccc}
\beta & 0 & 0 \\
0 & \beta & 0 \\
0 & 0 & -\frac{\beta}{\alpha^{2}+\beta^{2}}
\end{array}\right)
$$

z - component is negative $\rightarrow J_{z}=-\frac{\beta}{\alpha^{2}+\beta^{2}} E_{z}$
\Rightarrow dependent sources in the material!

Summary Maxwellian PML

We now have found a PML formulation

- that uses an anisotropic material as an absorbing layer.
- that is similar but not equal to the techniques showed before.
- that is easy to implement in existing frequency-domain code.

Summary Maxwellian PML

We now have found a PML formulation

- that uses an anisotropic material as an absorbing layer.
- that is similar but not equal to the techniques showed before.
- that is easy to implement in existing frequency-domain code.

Problems and Questions remaining:

- Generalization to other geometries (e.g. cylindrical, spherical coordinates)?
- Link between the 2 PML formulations?
- Are there other PML formulations?

Summary Maxwellian PML

We now have found a PML formulation

- that uses an anisotropic material as an absorbing layer.
- that is similar but not equal to the techniques showed before.
- that is easy to implement in existing frequency-domain code.

Problems and Questions remaining:

- Generalization to other geometries (e.g. cylindrical, spherical coordinates)?
- Link between the 2 PML formulations?
- Are there other PML formulations?

PML using differential forms

Non-Maxwellian PML formulation:

$$
x^{i} \longmapsto \tilde{x}^{i}=\int_{0}^{x^{i}} s_{i}\left(\hat{x}^{i}\right) d \hat{x}^{i}
$$

with

$$
s_{i}\left(\hat{x}^{i}\right)=a_{i}\left(\hat{x}^{i}\right)+i \sigma_{i}\left(\hat{x}^{i}\right) / \omega
$$

Re-Interpretation:
mapping on complex coordinates \rightarrow change of metric

$$
g_{i j}=\delta_{i j} \mapsto \tilde{g}_{i j}=g_{k l} \frac{\partial \tilde{x}^{k}}{\partial x^{i}} \frac{\partial \tilde{x}^{l}}{\partial x^{j}}=\left(\begin{array}{ccc}
\left(s_{1}\right)^{2} & 0 & 0 \\
0 & \left(s_{2}\right)^{2} & 0 \\
0 & 0 & \left(s_{3}\right)^{2}
\end{array}\right)
$$

General Case

- Consider the general orthogonal curvilinear case $\left(u^{1}, u^{2}, u^{3}\right)$
- $g_{i j}$ is given in terms of the Lamé coefficients $h_{i}: g_{i j}=h_{i}^{2}\left(u^{1}, u^{2}, u^{3}\right) \cdot \delta_{i j}$
- Choose u^{3} to be analytically continued: $u^{3} \mapsto \tilde{u}^{3}=\int_{0}^{u^{3}} s(\lambda) d \lambda$

$$
\rightarrow \tilde{g}_{i j}=\left(\begin{array}{ccc}
\left(\tilde{h}_{1}\right)^{2} & 0 & 0 \\
0 & \left(\tilde{h}_{2}\right)^{2} & 0 \\
0 & 0 & \left(\tilde{h}_{3}\right)^{2}
\end{array}\right)
$$

with $\tilde{h}_{1 / 2}=h_{1 / 2}\left(u^{1}, u^{2}, \tilde{u}^{3}\right)$ and $\tilde{h}_{3}=\operatorname{sh}_{3}\left(u^{1}, u^{2}, \tilde{u}^{3}\right)$.

Mapping forms to vectors

Given a metric $g_{i j}=\left(h_{i}\right)^{2} \cdot \delta_{i j}$ there is a natural isomorphism mapping

- 1 -forms to vectors

$$
\Omega=\Omega_{i} d u^{i} \quad \stackrel{g_{i j}}{\longmapsto} \quad \vec{\Omega}=\frac{\Omega_{i}}{h_{i}} \vec{u}^{i}
$$

- 2-forms to axial vectors

$$
\Phi=\Phi_{i} d u^{[i+1]} \wedge d u^{[i+2]} \quad \stackrel{g_{i j}}{\longmapsto} \quad \vec{\Phi}=\frac{\Phi_{i}}{h_{[i+1]} h_{[i+2]}} \vec{u}^{i}
$$

with \vec{u}^{i} the unit vector in u^{i} direction and $[i] \equiv i \bmod 3$ for $i \neq 3$ and $[3]=3$.

Maxwell's equations

Maxwell's Equations using differential forms (no sources!)

$$
\begin{aligned}
d E & =i \omega B \\
d H & =-i \omega D \\
d D & =0 \\
d B & =0
\end{aligned}
$$

- E,H : el., magn. field intensity 1-forms
- D,B : el., magn. flux density 2 -forms
- d : exterior derivative, metric independent

$$
\mathrm{d} \text { acts } \begin{cases}\text { on 1-forms (} \hat{=} \text { vectors) } & : \quad \operatorname{curl} \\ \text { on 2-forms (氖axial vectors) } & : \quad d i v\end{cases}
$$

Constitutive Parameters

For differential forms, the constitutive parameters are given in terms of Hodge star operators:

$$
\begin{aligned}
D & =\star_{e} E \\
B & =\star_{h} H
\end{aligned}
$$

The Hodge Star operator

- establishes in the 3D case a natural isomorphism between the 1 -forms E, H and the 2 -forms D, B.
- depends on the metric
- for the euclidean metric is given though $\star d x=d y d z, \star d y=d x d z$ and $\star d z=d x d y$.

Expressing the electric and magnetic 1 -forms in terms of $\left(u^{1}, u^{2}, u^{3}\right)$

$$
E=E_{i} h_{i} d u^{i} \quad H=H_{i} h_{i} d u^{i}
$$

The flux 2 -forms become

$$
\begin{aligned}
& D=\star_{e}\left(E_{i} h_{i} d u^{i}\right)=\sum_{j} \varepsilon_{i j} E_{j} h_{[i+1]} h_{[i+2]} d u^{[i+1]} \wedge d u^{[i+2]} \\
& B=\star_{h}\left(H_{i} h_{i} d u^{i}\right)=\sum_{j} \mu_{i j} H_{j} h_{[i+1]} h_{[i+2]} d u^{[i+1]} \wedge d u^{[i+2]}
\end{aligned}
$$

NB: the star operator depends on the metric!

Change of metric

Maxwell's equations under a change on the metric

$$
\left.\begin{array}{rl}
\left.\begin{array}{rl}
d \tilde{E} & = \\
d \tilde{H} & = \\
d \omega \tilde{D} \\
d \tilde{D} & =0 \\
d \tilde{B} & =0
\end{array}\right\} \text { same as before. } \\
\tilde{D}=\tilde{\star}_{e} \tilde{E} \\
\tilde{B} & =\tilde{\star}_{h} \tilde{H}
\end{array}\right\} \text { modified operators } \tilde{\star}_{e / h} \text { defined by new metric. }
$$

- The PML in the diff. forms language is unique and unifies the various PML formulations.
- The different formulations can be derived by a simple choice on how to map the forms to vector quantities.

The Maxwellian PML Formulation

Map from forms to corresponding dual vector quantities governed by original metric tensor $\left(g_{i j}\right)$:

$$
\begin{array}{r}
\tilde{E}=\tilde{E}_{i} \tilde{h}_{i} d u^{i} \xrightarrow{\left(g_{i j}\right)} \vec{E}^{m}=E_{i}^{m} \vec{u}^{i}=\frac{\tilde{h}_{i}}{h_{i}} \tilde{E}_{i} \vec{u}^{i} \\
\tilde{D} \xrightarrow{\left(g_{i j}\right)} \vec{D}^{m}=D_{i}^{m} \vec{u}^{i}=\sum_{j} \frac{\tilde{h}_{k} \tilde{h}_{l}}{h_{k} h_{l}} \varepsilon_{i j} \tilde{E}_{j} \vec{u}^{i}
\end{array}
$$

Modified constitutive tensors are given through

$$
\vec{D}^{m}=\varepsilon_{P M L} \cdot \vec{E}^{m}
$$

with

$$
\left(\varepsilon_{P M L}\right)_{i j}=\frac{\tilde{h}_{[i+1]} \tilde{h}_{[i+2]}}{h_{[i+1]} h_{[i+2]}} \varepsilon_{i j} \frac{h_{j}}{\tilde{h}_{j}}
$$

Example

free space:

$$
\begin{aligned}
h_{1} & =1 \\
h_{2} & =1 \\
h_{3} & =1
\end{aligned}
$$

$$
\begin{aligned}
& \text { free space } \\
& z \mapsto \tilde{z}=\int_{0}^{z} s(\lambda) d \lambda \\
& \tilde{h}_{1}=1 \\
& \tilde{h}_{2}=1
\end{aligned}
$$

Example

free space:

$$
\begin{aligned}
h_{1} & =1 \\
h_{2} & =1 \\
h_{3} & =1
\end{aligned}
$$

$$
\begin{aligned}
& \text { free space } \\
& \text { Inside PML: } \\
& \tilde{h}_{1}=1 \\
& \tilde{h}_{2}=1 \\
& \tilde{h}_{3}=s(z) \\
& z \mapsto \tilde{z}=\int_{0}^{z} s(\lambda) d \lambda \\
& \varepsilon_{i j}=\varepsilon_{0} \cdot \delta_{i j} \Rightarrow\left(\varepsilon_{P M L}\right)_{i i}=\frac{\tilde{h}_{[i+1]} \tilde{h}_{[i+2]}}{h_{[i+1]} h_{[i+2]}} \varepsilon_{0} \frac{h_{i}}{\tilde{h}_{i}} \\
& \Rightarrow \varepsilon_{P M L}=\varepsilon_{0}\left(\begin{array}{ccc}
s(z) & 0 & 0 \\
0 & s(z) & 0 \\
0 & 0 & \frac{1}{s(z)}
\end{array}\right)
\end{aligned}
$$

In accordance with the result derived before!

Non-Maxwellian PML Formulation

Map from forms to corresponding dual vector quantities governed by modified, complex metric tensor $\left(\tilde{g}_{i j}\right)$:

$$
\begin{array}{r}
\tilde{E}=\tilde{E}_{i} \tilde{h}_{i} d u \xrightarrow{i} \xrightarrow{\left(\tilde{g}_{i j}\right)} \vec{E}^{c}=E_{i}^{c} \vec{u}^{i}=\tilde{E}_{i} \vec{u}^{i} \\
\tilde{D} \xrightarrow{\left(\tilde{g}_{i j}\right)} \vec{D}^{c}=D_{i}^{c} \vec{u}^{i}=\sum_{j} \varepsilon_{i j} \tilde{E}_{j} \vec{u}^{i}
\end{array}
$$

In contrary to the Maxwellian formulation, we obtain that

- the constitutive relations stay the same: $\vec{D}^{c}=\varepsilon \vec{E}^{c}$ and $\vec{B}^{c}=\mu \vec{H}^{c}$
- Maxwell's equations are modified to add additional degrees of freedom. In the Cartesian case, we obtain

$$
\begin{aligned}
\tilde{\nabla} \cdot \varepsilon \vec{E} & =0 & \tilde{\nabla} \times \vec{E} & =-i \omega \mu \vec{H} \\
\tilde{\nabla} \cdot \mu \vec{H} & =0 & & \tilde{\nabla} \times \vec{H}
\end{aligned}=i \omega \varepsilon \vec{E}
$$

New Classes of PML

Other choices of metrics ($\hat{g}_{i j}$) are also possible: e.g. hybridizations:

- $\left(\hat{g}_{i j}\right)=\alpha\left(g_{i j}\right)+\beta\left(\tilde{g}_{i j}\right)$
- $\left(\hat{g}_{i j}\right)=\sum_{k=1}^{3}\left(g_{i k}\right)^{\alpha}\left(\tilde{g}_{k j}\right)^{\beta}$

The second choice leads to

$$
\begin{aligned}
\vec{E}^{(\alpha, \beta)} & =E_{i}^{(\alpha, \beta)} \vec{u}^{i}=\frac{\tilde{h}_{i}^{1-\beta}}{h_{i}^{\alpha}} \tilde{E}_{i} \vec{u}^{i} \\
\vec{D}^{(\alpha, \beta)} & =D_{i}^{(\alpha, \beta)} \vec{u}^{i}=\sum_{j} \frac{\tilde{h}_{[i+1]}^{1-\beta} \tilde{h}_{[i+2]}^{1-\beta}}{h_{[i+1]}^{\alpha} h_{[i+2]}^{\alpha+2 j}} \varepsilon_{i j} \tilde{E}_{j} \vec{u}^{i}
\end{aligned}
$$

and a permittivity

$$
\varepsilon_{i j}^{(\alpha, \beta)}=\frac{\tilde{h}_{[i+1]}^{1-\beta} \tilde{h}_{[i+2]}^{1-\beta}}{h_{[i+1]}^{\alpha} h_{[i+2]}^{\alpha}} \varepsilon_{i j} \frac{h_{j}^{\alpha}}{\tilde{h}_{j}^{1-\beta}}
$$

Summary

Conclusion

- Change of variables \rightarrow change of constitutive parameters
- No change on Maxwell's equations!
- tedious calculation

Differential forms provide

- a method independent of the field equations.

2

- an elegant way to generalize a PML for different geometries.
- a unique formulation for a PML. (different formulations correspond to different mappings)

