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Overview

• Some properties of hyperbolic systems of first order PDE

• Well-posedness of the PML model

• Stability of the PML-method



Cauchy problem in R2

Lets have a look at a Cauchy problem in R2
∂V
∂t + Ax

∂V
∂x + Ay

∂V
∂y + BV = 0, (x, y) ∈ R2, t < 0

V (x, y, 0) = V0(x, y), (x, y) ∈ R2

V ∈ Rd, (Ax, Ay, B) ∈ L(Rd)3

Observe that the PML-System in two dimensions:

∂Ux

∂t + σUx + Ax
∂
∂x(Ux + Uy) = 0

∂Uy

∂t + Ay
∂
∂y(Ux + Uy) = 0

is a problem of this type if we set:

V =
(

Ux

Uy

)
, Ax =

( Ax Ax

0 0

)
, Ay =

( 0 0
Ay Ay

)
, B =

(
σI 0
0 0

)



Definition 1. We say that the Cauchy problem is well-posed if for every
V0 in Hs, there exists a unique solution V ∈ C0(R+, L2) that satisfies a
estimation on the type:

∀t > 0, ‖V (t)‖L2 6 C(t) ‖V0‖Hs

It is called strongly well-posed if s = 0, otherwise it is called weakly
well-posed.

When is the above Cauchy problem a well-posed problem?

Applying the Fourier transform in space: V (x, y, t) −→ V̂ (kx, ky, t)

∂V̂
∂t + ( i(kxAx + kyAy︸ ︷︷ ︸

A(k)

) + B ) V̂ = 0

V̂ (kx, ky, 0) = V̂0(kx, ky)



The solution to this problem is:

V̂ (kx, ky, t) = ei(A(k)−iB)tV̂0

If we want an estimation like in the definition, we have to estimate the
exponential term.

In practice, this is the same as finding particular solution in forms of
plane waves:

V (x, y, t) = V (k)ei(kxx+kyy)eiω(k)t, k = (kx, ky) ∈ R2, ω(k) ∈ C

This leads us to the dispersion relation: det(A(k)− iB − ωI) = 0

We denote by {ω(k)} the set of all branch of solutions.



For the problem to be well-posed it is necessary that:

Im ω(k) is bounded below, ∀k ∈ R2

This is because of: eiω(k)t = eiRe(ω(k))te−Im(ω(k))t

Geometrically this can be interpreted as:

All the complex curves |k| → ω(|k| ·K),K = k
|k| stay above a half plane.

Because the functions ω(k) are continuous, we only have to look at what
happens if |k| goes to ∞.

The original problem can be interpreted as a perturbation of a homogenous
system, where B = 0. So we first have a look at that.



The unperturbed system

Definition 2. The unperturbed system is called hyperbolic if

∀k ∈ R2, the eigenvalues of A(k) are real.

It is called strongly hyperbolic (otherwise weakly hyperbolic) if

∀k ∈ R2, A(k) can be diagonalised.

The dispersion relation det(A(k) − ωI) = 0 becomes the characteristic
equation of the Matrix A(k): ω has to be an eigenvalue of A(k).

The solutions ω(k) are homogenous functions of order 1 in k, so in
this case the curves are straight lines.

A(k) is real and therefore the eigenvalues are paired by complex conjugation.
So the curves are also paired by symmetry to the reel axis.



We have a well-posed problem, if all curves are on the real axes, which
means that the system is hyperbolic. In fact there is a more precise result:

Theorem 1. (Kreiss) In the case B = 0, the problem is well-posed if and
only if the system is hyperbolic, and:

• strongly hyperbolic ⇒ strongly well-posed
and ∀t > 0, ‖V (t)‖L2 ≤ C ‖V0‖L2

• weakly hyperbolic ⇒ weakly well-posed
and ∀t > 0, ‖V (t)‖L2 ≤ C(1 + t)s ‖V0‖Hs , s ≥ 1



The perturbed system (B 6= 0)
Theorem 2. If the unperturbed system is strongly hyperbolic, then the
problem is strongly well-posed and it exists a constant K > 0 such that:

∀t > 0, ‖V (t)‖L2 ≤ CeKt ‖V0‖L2

If the unperturbed system is only weakly hyperbolic, then for certain matrices
B the problem is ill-posed.

The notation of well-posedness guarantees a unique solution, but it does
not exclude exponential growth in time.

Therefore this isn’t sufficient for a PML, witch should be absorbing.



Definition 3. We suppose that the Cauchy problem is well-posed.
Then the system is called strongly stable if the solution holds:

∀t > 0, ‖V (t)‖L2 ≤ C ‖V0‖L2

or weakly stable if it holds:

∀t > 0, ‖V (t)‖L2 ≤ C(1 + t)s ‖V0‖Hs , s ≥ 1

The Cauchy problem is stable if and only if

∀k ∈ R2 the solutions ω(k) satisfy Imω(k) ≥ 0.

The existence of solutions ω with negative imaginary parts would correspond
to plane wave solutions with exponential growth in time.
A stable system does not admit such solutions.



Example in one dimension

∂

∂t

(
u
v
w

)
+ A

∂

∂x

(
u
v
w

)
+ B

(
u
v
w

)
= 0

where the matrix A is given by: A =

( 0 0 0
0 2 1
0 −1 0

)
The eigenvalues of A are 0 (simple) and 1 (double), and it is not
diagonalisable.
Consider successively (a ∈ R):

B = B1 =

( 0 −1 0
0 0 a
0 0 0

)
, B = B2 =

( 0 −1 0
a 0 0
0 0 0

)



With B = B1 we obtain the following equation for u if we eliminate v
and w

∂

∂t

(∂2u

∂t2
+ 2

∂2u

∂x∂t
+

∂2u

∂x2
+ a

∂u

∂x

)
= 0

The dispersion relation is iω(−ω2 − 2kω − k2 − iak) = 0,
and the solutions are:

ω = 0, ω = −k ± |ak|
1
2 1+i√

2

One of them has a imaginary part that goes to −∞ when |k| goes to +∞.
So in this case the problem is ill-posed.



With B = B2 we obtain a slightly different equation for u

∂

∂t

(∂2u

∂t2
+ 2

∂2u

∂x∂t
+

∂2u

∂x2
+ au

)
= 0

Now the dispersion relation is iω(−ω2 − 2kω − k2 + a) = 0,
and the solutions are:

ω = 0, ω = −k ±
√

a

There imaginary parts are uniformly bounded and therefore the problem is
well-posed.

But we see also, that the system is stable if a ≥ 0 and instable if
a < 0.



Well-posedness of the PML model

First, have a look at the PML system for acoustic waves:

ρ(∂ux

∂t + σux)− ∂vx
∂x = 0

µ−1(∂vx
∂t + σvx)− ∂

∂x(ux + uy) = 0

ρ∂uy

∂t −
∂vy

∂y = 0

µ−1∂vy

∂t −
∂
∂y(ux + uy) = 0

If we set ρ = µ = 1 and σ = const., we can simplify:(
∂
∂t + σ

)2
(∂2u

∂t2
− ∂2u

∂y2)− ∂4u
∂x2∂t2

= 0



From this we get the dispersion relation:

det(A(k)− iB − ωI) = (iω + σ)2(ω2 − k2
y) + ω2k2

x = 0

And the one for the unperturbed system: ω2(ω2 − k2
y − k2

x) = 0

ω = 0 is a double eigenvalue of A(k) and it is not diagonalisable.
⇒ not strongly hyperbolic

To show that the system stays well-posed anyway, we have to look at the
development of the four solutions ω(k) for great values of |k|:

ω(k) = ± |k|+ iσk2
x/ |k|2 + O(|k|−1),

ω(k) = σ
±kxky+ik2

y

|k|2
+ O(|k|−1),

The imaginary parts are bounded regardless of the sign of σ.
One can show that: σ > 0 ⇒ 0 ≤ Im ω(k) ≤ σ,∀k ∈ R2



Theorem 3. The Cauchy problem associated to the PML system for
acoustic waves with constant coefficients is weakly well-posed. More
precisely, for every initial data V0 = (ux

0, u
y
0, vx,0, vy,0) in L2(R2) there

exists a unique solution:

(u = ux + uy, vx, vy) ∈ C0(R+, L2(R2)), e = ux− uy ∈ C0(R+,H−1(R2)),

and if σ > 0, we have the estimations:{
‖u(., t)‖L2 + ‖vx(., t)‖L2 + ‖vy(., t)‖L2 ≤ C ‖V0‖L2

‖e(., t)‖H−1 ≤ C(1 + t) ‖V0‖L2

If σ < 0 there are similar estimations with Ce|σ|t in place of C.
The loss of regularity concerns only the ”not physical” value e.



Energy estimation

For the unperturbed system:
ρ∂u

∂t −
∂vx
∂x −

∂vy

∂y = 0

µ−1∂vx
∂t −

∂u
∂t = 0

µ−1∂vy

∂t −
∂u
∂t = 0

we have conservation of the energy:

d
dt

{
1
2

∫
ρ |u|2 + µ−1 |v|2 dx

}
= 0

Is there also a energy estimation for the PML system?



The formulation of Zhao-Cangellaris

We have to make a change of the unknown functions:

(ux, uy, vx, vy) −→ (u, vx, vy, v
∗
y)

where the new functions are given by: u = ux + uy,
∂v∗y
∂t = ∂vy

∂t + σvy

From the first and the third equations we get:

∂
∂t

[
ρ
(

∂ux

∂t + σux
)
− ∂vx

∂x

]
= 0(

∂
∂t + σ

) [
ρ∂uy

∂t −
∂vy

∂y

]
= 0

After summation, it becomes

∂
∂t

(
ρ
(

∂
∂t + σ

)
u− ∂vx

∂x

)
− ∂

∂y

(
∂
∂t + σ

)
vy = 0



Finally we get:

ρ
(

∂
∂t + σ

)
u− ∂vx

∂x −
∂v∗y
∂y = 0

together with the second and fourth equation and the one for v∗y, we have
the new system: 

ρ
(

∂u
∂t + σu

)
− ∂vx

∂x −
∂v∗y
∂y = 0

µ−1(∂vx
∂t + σvx)− ∂u

∂x = 0

µ−1∂vy

∂t −
∂u
∂y = 0

∂v∗y
∂t = ∂vy

∂t + σvy



Theorem 4. The solution of the Cauchy problem associated to the system
above satisfies:

1
2

d

dt

{∫
ρ

∣∣∣∣∂u

∂t
+ σu

∣∣∣∣2 dx +
∫

µ−1

∣∣∣∣∂vx

∂t

∣∣∣∣2 +
∣∣∣∣∂v∗y

∂t

∣∣∣∣2 dx

}

+
1
2

d

dt

{∫
σ2µ−1 |vx|2 dx

}
+ 2

∫
σµ−1

∣∣∣∣∂vx

∂t

∣∣∣∣2 dx = 0

This shows the dissipative character of the PML system if σ > 0

Attention: This is only true, if σ is constant.



The general case

Let’s come back to the general PML system in 2 dimensions:
∂Ux

∂t + σUx + Ax
∂
∂x(Ux + Uy) = 0

∂Uy

∂t + Ay
∂
∂y(Ux + Uy) = 0

which can be rewritten as: V =
(

Ux

Uy

)
∂V

∂t
+
( Ax Ax

0 0

)∂V

∂x
+
( 0 0

Ay Ay

)∂V

∂y
+
(

σI 0
0 0

)
V = 0

the Matrix A(k) becomes:

A(k) = kx

( Ax Ax

0 0

)
+ ky

( 0 0
Ay Ay

)
=
(

kxAx kxAx

kyAy kyAy

)



and the eigenvalues are given by the equation:

det(A(k)− ωI2d) = det
(

kxAx − ωId kxAx

kyAy kyAy − ωId

)

= det
( −ωId kxAx

0 kxAx + kyAy − ωId

)
= det(−ωId) det(kxAx + kyAy − ωId)

= (−ω)d det(kxAx + kyAy − ωId) = 0

ω = 0 is d-times eigenvalue and moreover A(k) is not diagonalisable.
⇒ not strongly hyperbolic

One can show that the character of weakly well-posedness stays preserved.
But there is no general result about the stability.



Stability of the PML-method

Let’s start with an example:
Elastic waves in an anisotropic medium in 2D

ρ
∂2u

∂t2
− P (i

∂

∂x
, i

∂

∂y
)u = 0

where u = (ui) denotes the displacement field, ρ > 0 the density and the
matrix P is given by:

P (Kx,Ky) =
(

c11K
2
x + c33K

2
y (c12 + c33)KxKy

(c12 + c33)KxKy c33K
2
x + c22K

2
y

)
If we want solutions in the form of plane waves:

u(x, y, t) = Dei(ωt−(kxx+kyy))



we have to solve the dispersion relation:

F (ω, k) = det(P (kx, ky)− ρω2I) = 0

The function F (ω, k) is homogeneous of order 4

For every k, we get 4 solutions ω(k) = |k|ω(K),

and the equation can be rewritten as

F (1, k
ω) = F (1, ~S) = 0

k = (kx, ky)
K = k/ |k| : unit propagation direction
S = k/ω : slowness vector



Slowness diagram

the slowness diagram: set of all points in the plane of slowness
vectors S = k/ω that satisfy F (1, ~S) = 0

On each straight line with direction K we get 4 points K/ω(|K|) that
belong to the diagram. Altogether we have 2 closed curves, the slowness
curves:



Some numerical simulations

Numerical calculations with PML of a wave emitted by a point source.
Case I: Isotropic Medium



Case II: anisotropic medium with c11 = c22 = 20, c33 = 2, c12 = 3.8



Case III: anisotropic medium with c11 = 4, c22 = 20, c33 = 2, c12 = 7.5



A necessary stability condition

Let’s come back to a general model of propagation described by the
hyperbolic system:

∂U
∂t + Ax

∂U
∂x + Ay

∂U
∂y = 0

The dispersion relation has also the form of a homogenous function

F (ω, k) = 0.

So the notation of the slowness curves can be generalised to this system.

We define: group velocity associated to the mode ω(k)

Vg(k) := ∇kω(k) (= (Vx(k), Vy(k)) )



By differentiation of F (ω, k) = 0 we get:

∂F
∂ω (ω, k) ∇kω(k) +∇kF (ω, k) = 0

witch gives us: ∇kω(k) =
(
−∂F

∂ω (ω, k)
)−1∇kF (ω, k)

So the group velocities are orthogonal to the slowness curves. The direction
of Vg(k) is given by the normal to the slowness curves at the point k/ω(k).

Theorem 5. For the PML model in x-direction to be stable it is necessary
that for all mode ω(k), it holds:

∀K = (Kx,Ky) Kx · Vx(K) ≥ 0

For the PML model in y-direction: simply replace x by y



Geometric interpretation

The geometrical interpretation of this necessary property is the following:

The vectors K (and therefore S) and Vg(k) must have the same orientations
with respect to the vertical line parallel to the y-axes.

If the condition is not fulfilled, we speak about backward propagative
mode.



Interpretation of the numerical simulations

For the two anisotropic mediums we had this two slowness diagrams:

There we can see, why the third case is not stable. The coloured sections are
the backward propagative modes for the x-direction (blue) resp. y-direction
(red).



Summary

• homogeneous and anisotropic wave equation:

– weakly well-posedness
– stability of the PML methode if σ > 0
– dissipation result

• general media

– leads also to a weakly well-posed problem
– necessary but not sufficient stability condition


