Mathematical Properties of PML in time domain

Oliver Pfeifer
by P. Joly

Overview

- Some properties of hyperbolic systems of first order PDE
- Well-posedness of the PML model
- Stability of the PML-method

Cauchy problem in \mathbb{R}^{2}

Lets have a look at a Cauchy problem in \mathbb{R}^{2}

$$
\left\{\begin{array}{l}
\frac{\partial V}{\partial t}+A_{x} \frac{\partial V}{\partial x}+A_{y} \frac{\partial V}{\partial y}+B V=0,(x, y) \in \mathbb{R}^{2}, t<0 \\
V(x, y, 0)=V_{0}(x, y),(x, y) \in \mathbb{R}^{2} \\
V \in \mathbb{R}^{d},\left(A_{x}, A_{y}, B\right) \in \mathcal{L}\left(\mathbb{R}^{d}\right)^{3}
\end{array}\right.
$$

Observe that the PML-System in two dimensions:

$$
\begin{aligned}
& \frac{\partial U^{x}}{\partial t}+\sigma U^{x}+\mathbf{A}_{x} \frac{\partial}{\partial x}\left(U^{x}+U^{y}\right)=0 \\
& \frac{\partial U^{y}}{\partial t}+\mathbf{A}_{y} \frac{\partial}{\partial y}\left(U^{x}+U^{y}\right)=0
\end{aligned}
$$

is a problem of this type if we set:

$$
V=\binom{U^{x}}{U^{y}}, A_{x}=\left(\begin{array}{ll}
\mathbf{A}_{x} & \mathbf{A}_{x} \\
0 & 0
\end{array}\right), A_{y}=\left(\begin{array}{cc}
0 & 0 \\
\mathbf{A}_{y} & \mathbf{A}_{y}
\end{array}\right), B=\left(\begin{array}{ll}
\sigma I & 0 \\
0 & 0
\end{array}\right)
$$

Definition 1. We say that the Cauchy problem is well-posed if for every V_{0} in H^{s}, there exists a unique solution $V \in C^{0}\left(\mathbb{R}^{+}, L^{2}\right)$ that satisfies a estimation on the type:

$$
\forall t>0,\|V(t)\|_{L^{2}} \leqslant C(t)\left\|V_{0}\right\|_{H^{s}}
$$

It is called strongly well-posed if $s=0$, otherwise it is called weakly well-posed.

When is the above Cauchy problem a well-posed problem?
Applying the Fourier transform in space: $V(x, y, t) \longrightarrow \hat{V}\left(k_{x}, k_{y}, t\right)$

$$
\begin{gathered}
\frac{\partial \hat{V}}{\partial t}+(i(\underbrace{k_{x} A_{x}+k_{y} A_{y}}_{A(k)})+B) \hat{V}=0 \\
\hat{V}\left(k_{x}, k_{y}, 0\right)=\hat{V}_{0}\left(k_{x}, k_{y}\right)
\end{gathered}
$$

The solution to this problem is:

$$
\hat{V}\left(k_{x}, k_{y}, t\right)=e^{i(A(k)-i B) t} \hat{V}_{0}
$$

If we want an estimation like in the definition, we have to estimate the exponential term.

In practice, this is the same as finding particular solution in forms of plane waves:

$$
V(x, y, t)=V(k) e^{i\left(k_{x} x+k_{y} y\right)} e^{i \omega(k) t}, k=\left(k_{x}, k_{y}\right) \in \mathbb{R}^{2}, \omega(k) \in \mathbb{C}
$$

This leads us to the dispersion relation: $\operatorname{det}(A(k)-i B-\omega I)=0$
We denote by $\{\omega(k)\}$ the set of all branch of solutions.

For the problem to be well-posed it is necessary that:

$$
\operatorname{Im} \omega(k) \text { is bounded below, } \forall k \in \mathbb{R}^{2}
$$

This is because of: $e^{i \omega(k) t}=e^{i \operatorname{Re}(\omega(k)) t} e^{-\operatorname{Im}(\omega(k)) t}$
Geometrically this can be interpreted as:
All the complex curves $|k| \rightarrow \omega(|k| \cdot K), K=\frac{k}{|k|}$ stay above a half plane.
Because the functions $\omega(k)$ are continuous, we only have to look at what happens if $|k|$ goes to ∞.

The original problem can be interpreted as a perturbation of a homogenous system, where $B=0$. So we first have a look at that.

The unperturbed system

Definition 2. The unperturbed system is called hyperbolic if

$$
\forall k \in \mathbb{R}^{2} \text {, the eigenvalues of } A(k) \text { are real. }
$$

It is called strongly hyperbolic (otherwise weakly hyperbolic) if

$$
\forall k \in \mathbb{R}^{2}, A(k) \text { can be diagonalised. }
$$

The dispersion relation $\operatorname{det}(A(k)-\omega I)=0$ becomes the characteristic equation of the Matrix $A(k)$: ω has to be an eigenvalue of $A(k)$.

The solutions $\omega(k)$ are homogenous functions of order 1 in k , so in this case the curves are straight lines.
$A(k)$ is real and therefore the eigenvalues are paired by complex conjugation. So the curves are also paired by symmetry to the reel axis.

We have a well-posed problem, if all curves are on the real axes, which means that the system is hyperbolic. In fact there is a more precise result:

Theorem 1. (Kreiss) In the case $B=0$, the problem is well-posed if and only if the system is hyperbolic, and:

- strongly hyperbolic \Rightarrow strongly well-posed

$$
\text { and } \forall t>0,\|V(t)\|_{L^{2}} \leq C\left\|V_{0}\right\|_{L^{2}}
$$

- weakly hyperbolic \Rightarrow weakly well-posed

$$
\text { and } \forall t>0,\|V(t)\|_{L^{2}} \leq C(1+t)^{s}\left\|V_{0}\right\|_{H^{s}}, s \geq 1
$$

The perturbed system $(B \neq 0)$

Theorem 2. If the unperturbed system is strongly hyperbolic, then the problem is strongly well-posed and it exists a constant $K>0$ such that:

$$
\forall t>0,\|V(t)\|_{L^{2}} \leq C e^{K t}\left\|V_{0}\right\|_{L^{2}}
$$

If the unperturbed system is only weakly hyperbolic, then for certain matrices B the problem is ill-posed.

The notation of well-posedness guarantees a unique solution, but it does not exclude exponential growth in time.

Therefore this isn't sufficient for a PML, witch should be absorbing.

Definition 3. We suppose that the Cauchy problem is well-posed. Then the system is called strongly stable if the solution holds:

$$
\forall t>0, \quad\|V(t)\|_{L^{2}} \leq C\left\|V_{0}\right\|_{L^{2}}
$$

or weakly stable if it holds:

$$
\forall t>0, \quad\|V(t)\|_{L^{2}} \leq C(1+t)^{s}\left\|V_{0}\right\|_{H^{s}}, s \geq 1
$$

The Cauchy problem is stable if and only if

$$
\forall k \in \mathbb{R}^{2} \text { the solutions } \omega(k) \text { satisfy } \operatorname{Im} \omega(k) \geq 0
$$

The existence of solutions ω with negative imaginary parts would correspond to plane wave solutions with exponential growth in time.
A stable system does not admit such solutions.

Example in one dimension

$$
\frac{\partial}{\partial t}\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)+A \frac{\partial}{\partial x}\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)+B\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)=0
$$

where the matrix A is given by: $A=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & -1 & 0\end{array}\right)$
The eigenvalues of A are 0 (simple) and 1 (double), and it is not diagonalisable.
Consider successively ($a \in \mathbb{R}$):

$$
B=B_{1}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & a \\
0 & 0 & 0
\end{array}\right), B=B_{2}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
a & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

With $B=B_{1}$ we obtain the following equation for u if we eliminate v and w

$$
\frac{\partial}{\partial t}\left(\frac{\partial^{2} u}{\partial t^{2}}+2 \frac{\partial^{2} u}{\partial x \partial t}+\frac{\partial^{2} u}{\partial x^{2}}+a \frac{\partial u}{\partial x}\right)=0
$$

The dispersion relation is $i \omega\left(-\omega^{2}-2 k \omega-k^{2}-i a k\right)=0$, and the solutions are:

$$
\omega=0, \omega=-k \pm|a k|^{\frac{1}{2}} \frac{1+i}{\sqrt{2}}
$$

One of them has a imaginary part that goes to $-\infty$ when $|k|$ goes to $+\infty$. So in this case the problem is ill-posed.

With $B=B_{2}$ we obtain a slightly different equation for u

$$
\frac{\partial}{\partial t}\left(\frac{\partial^{2} u}{\partial t^{2}}+2 \frac{\partial^{2} u}{\partial x \partial t}+\frac{\partial^{2} u}{\partial x^{2}}+a u\right)=0
$$

Now the dispersion relation is $i \omega\left(-\omega^{2}-2 k \omega-k^{2}+a\right)=0$, and the solutions are:

$$
\omega=0, \omega=-k \pm \sqrt{a}
$$

There imaginary parts are uniformly bounded and therefore the problem is well-posed.

But we see also, that the system is stable if $a \geq 0$ and instable if $a<0$.

Well-posedness of the PML model

First, have a look at the PML system for acoustic waves:

$$
\left\{\begin{array}{l}
\rho\left(\frac{\partial u^{x}}{\partial t}+\sigma u^{x}\right)-\frac{\partial v_{x}}{\partial x}=0 \\
\mu^{-1}\left(\frac{\partial v_{x}}{\partial t}+\sigma v_{x}\right)-\frac{\partial}{\partial x}\left(u^{x}+u^{y}\right)=0 \\
\rho \frac{\partial u^{y}}{\partial t}-\frac{\partial v_{y}}{\partial y}=0 \\
\mu^{-1} \frac{\partial v_{y}}{\partial t}-\frac{\partial}{\partial y}\left(u^{x}+u^{y}\right)=0
\end{array}\right.
$$

If we set $\rho=\mu=1$ and $\sigma=$ const., we can simplify:

$$
\left(\frac{\partial}{\partial t}+\sigma\right)^{2}\left(\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial y^{2}}\right)-\frac{\partial^{4} u}{\partial x^{2} \partial t^{2}}=0
$$

From this we get the dispersion relation:

$$
\operatorname{det}(A(k)-i B-\omega I)=(i \omega+\sigma)^{2}\left(\omega^{2}-k_{y}^{2}\right)+\omega^{2} k_{x}^{2}=0
$$

And the one for the unperturbed system: $\quad \omega^{2}\left(\omega^{2}-k_{y}^{2}-k_{x}^{2}\right)=0$
$\omega=0$ is a double eigenvalue of $A(k)$ and it is not diagonalisable.
\Rightarrow not strongly hyperbolic
To show that the system stays well-posed anyway, we have to look at the development of the four solutions $\omega(k)$ for great values of $|k|$:

$$
\left\{\begin{array}{l}
\omega(k)= \pm|k|+i \sigma k_{x}^{2} /|k|^{2}+O\left(|k|^{-1}\right) \\
\omega(k)=\sigma \frac{ \pm k_{x} k_{y}+i k_{y}^{2}}{|k|^{2}}+O\left(|k|^{-1}\right)
\end{array}\right.
$$

The imaginary parts are bounded regardless of the sign of σ.
One can show that: $\sigma>0 \Rightarrow 0 \leq \operatorname{Im} \omega(k) \leq \sigma, \forall k \in \mathbb{R}^{2}$

Theorem 3. The Cauchy problem associated to the PML system for acoustic waves with constant coefficients is weakly well-posed. More precisely, for every initial data $V_{0}=\left(u_{0}^{x}, u_{0}^{y}, v_{x, 0}, v_{y, 0}\right)$ in $L^{2}\left(\mathbb{R}^{2}\right)$ there exists a unique solution:
$\left(u=u^{x}+u^{y}, v_{x}, v_{y}\right) \in C^{0}\left(\mathbb{R}^{+}, L^{2}\left(\mathbb{R}^{2}\right)\right), e=u^{x}-u^{y} \in C^{0}\left(\mathbb{R}^{+}, H^{-1}\left(\mathbb{R}^{2}\right)\right)$, and if $\sigma>0$, we have the estimations:

$$
\left\{\begin{array}{l}
\|u(., t)\|_{L^{2}}+\left\|v_{x}(., t)\right\|_{L^{2}}+\left\|v_{y}(., t)\right\|_{L^{2}} \leq C\left\|V_{0}\right\|_{L^{2}} \\
\|e(., t)\|_{H^{-1}} \leq C(1+t)\left\|V_{0}\right\|_{L^{2}}
\end{array}\right.
$$

If $\sigma<0$ there are similar estimations with $C e^{|\sigma| t}$ in place of C. The loss of regularity concerns only the "not physical" value e.

Energy estimation

For the unperturbed system:

$$
\left\{\begin{array}{l}
\rho \frac{\partial u}{\partial t}-\frac{\partial v_{x}}{\partial x}-\frac{\partial v_{y}}{\partial y}=0 \\
\mu^{-1} \frac{\partial v_{x}}{\partial t}-\frac{\partial u}{\partial t}=0 \\
\mu^{-1} \frac{\partial v_{y}}{\partial t}-\frac{\partial u}{\partial t}=0
\end{array}\right.
$$

we have conservation of the energy:

$$
\frac{d}{d t}\left\{\frac{1}{2} \int \rho|u|^{2}+\mu^{-1}|v|^{2} d x\right\}=0
$$

Is there also a energy estimation for the PML system?

The formulation of Zhao-Cangellaris

We have to make a change of the unknown functions:

$$
\left(u^{x}, u^{y}, v_{x}, v_{y}\right) \longrightarrow\left(u, v_{x}, v_{y}, v_{y}^{*}\right)
$$

where the new functions are given by: $u=u^{x}+u^{y}, \quad \frac{\partial v_{y}^{*}}{\partial t}=\frac{\partial v_{y}}{\partial t}+\sigma v_{y}$
From the first and the third equations we get:

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left[\rho\left(\frac{\partial u^{x}}{\partial t}+\sigma u^{x}\right)-\frac{\partial v_{x}}{\partial x}\right]=0 \\
& \left(\frac{\partial}{\partial t}+\sigma\right)\left[\rho \frac{\partial u^{y}}{\partial t}-\frac{\partial v_{y}}{\partial y}\right]=0
\end{aligned}
$$

After summation, it becomes

$$
\frac{\partial}{\partial t}\left(\rho\left(\frac{\partial}{\partial t}+\sigma\right) u-\frac{\partial v_{x}}{\partial x}\right)-\frac{\partial}{\partial y}\left(\frac{\partial}{\partial t}+\sigma\right) v_{y}=0
$$

Finally we get:

$$
\rho\left(\frac{\partial}{\partial t}+\sigma\right) u-\frac{\partial v_{x}}{\partial x}-\frac{\partial v_{y}^{*}}{\partial y}=0
$$

together with the second and fourth equation and the one for v_{y}^{*}, we have the new system:

$$
\left\{\begin{array}{l}
\rho\left(\frac{\partial u}{\partial t}+\sigma u\right)-\frac{\partial v_{x}}{\partial x}-\frac{\partial v_{y}^{*}}{\partial y}=0 \\
\mu^{-1}\left(\frac{\partial v_{x}}{\partial t}+\sigma v_{x}\right)-\frac{\partial u}{\partial x}=0 \\
\mu^{-1} \frac{\partial v_{y}}{\partial t}-\frac{\partial u}{\partial y}=0 \\
\frac{\partial v_{y}^{*}}{\partial t}=\frac{\partial v_{y}}{\partial t}+\sigma v_{y}
\end{array}\right.
$$

Theorem 4. The solution of the Cauchy problem associated to the system above satisfies:

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left\{\int \rho\left|\frac{\partial u}{\partial t}+\sigma u\right|^{2} d x+\int \mu^{-1}\left|\frac{\partial v_{x}}{\partial t}\right|^{2}+\left|\frac{\partial v_{y}^{*}}{\partial t}\right|^{2} d x\right\} \\
& +\frac{1}{2} \frac{d}{d t}\left\{\int \sigma^{2} \mu^{-1}\left|v_{x}\right|^{2} d x\right\}+2 \int \sigma \mu^{-1}\left|\frac{\partial v_{x}}{\partial t}\right|^{2} d x=0
\end{aligned}
$$

This shows the dissipative character of the PML system if $\sigma>0$
Attention: This is only true, if σ is constant.

The general case

Let's come back to the general PML system in 2 dimensions:

$$
\left\{\begin{array}{l}
\frac{\partial U^{x}}{\partial t}+\sigma U^{x}+\mathbf{A}_{x} \frac{\partial}{\partial x}\left(U^{x}+U^{y}\right)=0 \\
\frac{\partial U^{y}}{\partial t}+\mathbf{A}_{y} \frac{\partial}{\partial y}\left(U^{x}+U^{y}\right)=0
\end{array}\right.
$$

which can be rewritten as: $V=\binom{U^{x}}{U^{y}}$

$$
\frac{\partial V}{\partial t}+\left(\begin{array}{cc}
\mathbf{A}_{x} & \mathbf{A}_{x} \\
0 & 0
\end{array}\right) \frac{\partial V}{\partial x}+\left(\begin{array}{cc}
0 & 0 \\
\mathbf{A}_{y} & \mathbf{A}_{y}
\end{array}\right) \frac{\partial V}{\partial y}+\left(\begin{array}{cc}
\sigma I & 0 \\
0 & 0
\end{array}\right) V=0
$$

the Matrix $A(k)$ becomes:

$$
A(k)=k_{x}\left(\begin{array}{cc}
\mathbf{A}_{x} & \mathbf{A}_{x} \\
0 & 0
\end{array}\right)+k_{y}\left(\begin{array}{cc}
0 & 0 \\
\mathbf{A}_{y} & \mathbf{A}_{y}
\end{array}\right)=\left(\begin{array}{ll}
k_{x} \mathbf{A}_{x} & k_{x} \mathbf{A}_{x} \\
k_{y} \mathbf{A}_{y} & k_{y} \mathbf{A}_{y}
\end{array}\right)
$$

and the eigenvalues are given by the equation:

$$
\begin{aligned}
\operatorname{det}\left(A(k)-\omega I_{2 d}\right) & =\operatorname{det}\left(\begin{array}{cc}
k_{x} \mathbf{A}_{x}-\omega I_{d} & k_{x} \mathbf{A}_{x} \\
k_{y} \mathbf{A}_{y} & k_{y} \mathbf{A}_{y}-\omega I_{d}
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{cc}
-\omega I_{d} & k_{x} \mathbf{A}_{x} \\
0 & k_{x} \mathbf{A}_{x}+k_{y} \mathbf{A}_{y}-\omega I_{d}
\end{array}\right) \\
& =\operatorname{det}\left(-\omega I_{d}\right) \operatorname{det}\left(k_{x} \mathbf{A}_{x}+k_{y} \mathbf{A}_{y}-\omega I_{d}\right) \\
& =(-\omega)^{d} \operatorname{det}\left(k_{x} \mathbf{A}_{x}+k_{y} \mathbf{A}_{y}-\omega I_{d}\right)=0
\end{aligned}
$$

$\omega=0$ is d-times eigenvalue and moreover $A(k)$ is not diagonalisable.
\Rightarrow not strongly hyperbolic
One can show that the character of weakly well-posedness stays preserved. But there is no general result about the stability.

Stability of the PML-method

Let's start with an example:
Elastic waves in an anisotropic medium in 2D

$$
\rho \frac{\partial^{2} u}{\partial t^{2}}-P\left(i \frac{\partial}{\partial x}, i \frac{\partial}{\partial y}\right) u=0
$$

where $u=\left(u_{i}\right)$ denotes the displacement field, $\rho>0$ the density and the matrix P is given by:

$$
P\left(K_{x}, K_{y}\right)=\left(\begin{array}{cc}
c_{11} K_{x}^{2}+c_{33} K_{y}^{2} & \left(c_{12}+c_{33}\right) K_{x} K_{y} \\
\left(c_{12}+c_{33}\right) K_{x} K_{y} & c_{33} K_{x}^{2}+c_{22} K_{y}^{2}
\end{array}\right)
$$

If we want solutions in the form of plane waves:

$$
u(x, y, t)=D e^{i\left(\omega t-\left(k_{x} x+k_{y} y\right)\right)}
$$

we have to solve the dispersion relation:

$$
F(\omega, k)=\operatorname{det}\left(P\left(k_{x}, k_{y}\right)-\rho \omega^{2} I\right)=0
$$

The function $F(\omega, k)$ is homogeneous of order 4
For every k , we get 4 solutions $\omega(k)=|k| \omega(K)$, and the equation can be rewritten as

$$
F\left(1, \frac{k}{\omega}\right)=F(1, \vec{S})=0
$$

$k=\left(k_{x}, k_{y}\right)$
$K=k /|k|$: unit propagation direction
$S=k / \omega$: slowness vector

Slowness diagram

the slowness diagram: set of all points in the plane of slowness vectors $S=k / \omega$ that satisfy $F(1, \vec{S})=0$

On each straight line with direction K we get 4 points $K / \omega(|K|)$ that belong to the diagram. Altogether we have 2 closed curves, the slowness curves:

[^0]
Some numerical simulations

Numerical calculations with PML of a wave emitted by a point source. Case I: Isotropic Medium

Slowness curves and Wave fronts for the isotropic media.

Some snapshots at different times for the isotropic media.

Case II: anisotropic medium with $c_{11}=c_{22}=20, c_{33}=2, c_{12}=3.8$

Slowness curves and Wave front for the orthotropic medium (II).

Some snapshots at different times for the orthotropic medium (II).

Case III: anisotropic medium with $c_{11}=4, c_{22}=20, c_{33}=2, c_{12}=7.5$

Slowness curves and Wave front for the orthotropic media (III).

Figure 13: Some snapshots at different times for the orthotropic media (III).

A necessary stability condition

Let's come back to a general model of propagation described by the hyperbolic system:

$$
\frac{\partial U}{\partial t}+\mathbf{A}_{x} \frac{\partial U}{\partial x}+\mathbf{A}_{y} \frac{\partial U}{\partial y}=0
$$

The dispersion relation has also the form of a homogenous function

$$
F(\omega, k)=0
$$

So the notation of the slowness curves can be generalised to this system.
We define: group velocity associated to the mode $\omega(k)$

$$
V_{g}(k):=\nabla_{k} \omega(k) \quad\left(=\left(V_{x}(k), V_{y}(k)\right)\right)
$$

By differentiation of $F(\omega, k)=0$ we get:

$$
\frac{\partial F}{\partial \omega}(\omega, k) \nabla_{k} \omega(k)+\nabla_{k} F(\omega, k)=0
$$

witch gives us: $\nabla_{k} \omega(k)=\left(-\frac{\partial F}{\partial \omega}(\omega, k)\right)^{-1} \nabla_{k} F(\omega, k)$
So the group velocities are orthogonal to the slowness curves. The direction of $V_{g}(k)$ is given by the normal to the slowness curves at the point $k / \omega(k)$.

Theorem 5. For the PML model in x-direction to be stable it is necessary that for all mode $\omega(k)$, it holds:

$$
\forall K=\left(K_{x}, K_{y}\right) \quad K_{x} \cdot V_{x}(K) \geq 0
$$

For the PML model in y-direction: simply replace x by y

Geometric interpretation

The geometrical interpretation of this necessary property is the following:

Stable

Not stable

The vectors K (and therefore S) and $V_{g}(k)$ must have the same orientations with respect to the vertical line parallel to the y-axes.

If the condition is not fulfilled, we speak about backward propagative mode.

Interpretation of the numerical simulations

For the two anisotropic mediums we had this two slowness diagrams:

Slowness diagrams. Left: material (II) - Right: material (III).
There we can see, why the third case is not stable. The coloured sections are the backward propagative modes for the x-direction (blue) resp. y-direction (red).

Summary

- homogeneous and anisotropic wave equation:
- weakly well-posedness
- stability of the PML methode if $\sigma>0$
- dissipation result
- general media
- leads also to a weakly well-posed problem
- necessary but not sufficient stability condition

[^0]: Slowness diagrams. Left: isotropic medium. Right: orthotropic medium.

