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First Part

INTRODUCTION AND
HANKEL FUNCTIONS



Task
| -

We want to show how we can adapt finite element mesh size.
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make when discretizing space.

We extend the idea of using a posteriori error estimates to determine the

PML parameters and propose an adaptive PML technique for solving the
Helmholtz-type scattering problem.
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Task
| -

We want to show how we can adapt finite element mesh size.

To do so, we need an a posteriori error estimate to control the error we
make when discretizing space.

We extend the idea of using a posteriori error estimates to determine the
PML parameters and propose an adaptive PML technique for solving the
Helmholtz-type scattering problem.

We will first introduce and prove some error estimates, later construct an
algorithm to adapt mesh size with a posteriori error control.

o |
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Scattering problem

o N

So, lets derive a PML technique for solving Helmholtz-type scattering
problems with perfectly conducting boundary.
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Scattering problem
B -

So, lets derive a PML technique for solving Helmholtz-type scattering
problems with perfectly conducting boundary.

Let D € R? denote the bounded domain (scatterer) with boundary T'p,
g € H~'/2(I'p) determined by the incoming wave, n the unit outer normal

toI'p.
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Scattering problem
B -

So, lets derive a PML technique for solving Helmholtz-type scattering
problems with perfectly conducting boundary.

Let D € R? denote the bounded domain (scatterer) with boundary T'p,
g € H~'/2(I'p) determined by the incoming wave, n the unit outer normal

toI'p.

Helmholtz-type scattering problem (constant k):

Au+k*u = 0 inR*\D
ou
a—n E— —d OnPD
ou |
ﬁ(a——lku> — 0 asr = x| = o0
r

o |
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Hankel functions

o N

First, consider the Bessel equation for functions of order v:

d? d
z2d—;+zd—z+(22—l/2)y20, v e C.
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Hankel functions

o N

First, consider the Bessel equation for functions of order v:

d? d
ZZd—,z'g+Zd_Z+(Z2_V2)y:O’ v e C.

The so called Bessel function of the first kind J,,(z) is defined as the
solution to the Bessel differential equation with non singular values at the
origin.
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Hankel functions

o N

First, consider the Bessel equation for functions of order v:

d? d
de—Z‘gﬂde—Z%—(z vy =0, veC.
The so called Bessel function of the first kind J,,(z) is defined as the
solution to the Bessel differential equation with non singular values at the

origin.

Jolxd

1 It
0.8 \"ﬂr{”
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Hankel functions (cont)

o N

The so called Bessel function of the second kind Y, (z) is defined as the
solution to the Bessel differential equation with singular values at the
origin.

o |
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Hankel functions (cont)

o N

The so called Bessel function of the second kind Y, (z) is defined as the
solution to the Bessel differential equation with singular values at the
origin.

An adaptive PML technigue for time-harmonic scatterina problems — p. 7/51



Hankel functions (cont)

- N

We introduce now the Hankel function of the first kind and order v
Hﬁl)(z), z € C, and the Hankel function of the second kind and order v
H(2), 2 € C, are defined by

H,ED(Z) = J,(2)+1iY,(2),
H,S2)(z) = J,(2) —iY,(2)

o |
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Hankel functions (cont)

- N

We introduce now the Hankel function of the first kind and order v
Hﬁl)(z), z € C, and the Hankel function of the second kind and order v

H(2), 2 € C, are defined by

H,ED(Z) = J,(2)+1iY,(2),
H,S2)(z) = J,(2) —iY,(2)

H(l)(Z) -~ iei(z—%l/ﬂ'—%ﬂ’)
Y V 7z ’
[ 2 - 1 1
H}SQ) (Z) -~ _6—z(z—§l/7r—z7r).
e
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Hankel functions, H;
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Hankel functions, Hl1

AT
e
e

FaHn, L
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Hankel functions, A"

FaHR ML

BemHE M
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Lemma 1

o N

Lemma 1:
Foranyv e R,z € C,y ={z€C:3(2) >0,R(2) >0}, and © € R such
that 0 < © < |z|, we have

—3(z 1—9—22
HO) <e UV M)
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Lemma 1

-

Lemma 1:
Foranyv e R,z € C,y ={z€C:3(2) >0,R(2) >0}, and © € R such
that 0 < © < |z|, we have

—3(z 1—@—22
HO) <e VTR M)

\ii
— d ’},l -
— OLfM
= g ..... i
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Lemma 1 (cont.)

nLEs
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Second Part

PML FORMULATION
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Setup
- -

Let the scatterer D be contained in the interior of the circle

Br = {x c R?: ‘(E‘ < R}, and Qp = BR\D

We now surround the domain €2z with a PML layer
OPML — 12 e R?: R < |2] < p}.

o |
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The PML formulation
L -

Look at the domain R?\ Br. The solution u of the scattering problem can
be written under the polar coordinates as follows:
1 27

HY (kr) .
u(r,0) = Z D () e ™, Up = — u(R,0)e”"0dh.
= Hy’ (kR) 21 Jo

" denotes the just discussed Hankel function of the first kind and order
n. It can be shown that this series converges uniformly for » > R.

o |
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Dirichlet-to-Neumann operator

o N

We now introduce the so called Dirichlet-to-Neumann operator
T : HY/2(T'gr) — H~'/2(I'), where I'p = 0Bp. It is definied as follows: for
any f € H'/?(Tg),

(1) o . 2m .
Hn (kR) fneme, f'n i fe—lan(g.

Tf:Zk :27T 0

1
= H\(kR)
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Dirichlet-to-Neumann operator

o N

We now introduce the so called Dirichlet-to-Neumann operator
T : HY/2(T'gr) — H~'/2(I'), where I'p = 0Bp. It is definied as follows: for
any f € H'/?(Tg),

(1) o . 2m .
Hn (kR) fneme, f'n i fe—lan(g.

Tf:Zk :27T 0

1
= H\(kR)

Looking at the representation of the solution « in polar coordinates:

H?gl) L _ 1 2m :
u(r,0) = Z D () e, Uy = — u(R, 0)e™ "%,
ne Hp, (kR) 2m 0

It IS obvious that it satisfies

L g—er:Tu. J
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Reformulation

o N

Leta: H'(Qgr) x H'(Qr) — C be the sesquilinear form

a(p, ) = /Q (Vo Vi — ko) do — (T, )1,

o |
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Reformulation

o N

Leta: H'(Qgr) x H'(Qr) — C be the sesquilinear form

0, 1) = /Q (Vo -V — K20 dz — (T, ).

Given g € H='/2(I'g), find u € H'(I'g) such that

a(U’?w) — <97¢>FD \V/w S Hl(QR),M > 0.
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Reformulation

o N

Leta: H'(Qgr) x H'(Qr) — C be the sesquilinear form

0, 1) = /Q (Vo -V — K20 dz — (T, ).

Given g € H='/2(I'g), find u € H'(I'g) such that

a(U’?w) — <97¢>FD \V/w S Hl(QR),M > 0.

sup a(p, 1))
0A£YEHL (QR) HwHHl(QR)

o |
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> pllollmin Ve € H'(Qr).



PML formulation

- N

Let a(r) = 1 +io(r) be the PML model medium property with
ceC(R), ¢>0, ando=0forr <R.

We denote by r the complex radius defined by

5 — i (r) r ifr < R,
r=7(r)=
o a(t)dt =rp(r) ifr>R.

o |
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PML formulation

- N

Let a(r) = 1 +io(r) be the PML model medium property with
ceC(R), ¢>0, ando=0forr <R.

We denote by r the complex radius defined by

ifr < R,

)= { [y a(t)dt =rp(r) ifr > R.

F=F

Lets introduce now the PML equation:
V- (AVw) + afk’w =0 in Q"ML
where A = A(x) is a matrix which satisfies, in polar coordinates,
10 (Br 0 a 0?
(AV) = = @« 9
L V- (4V) r@r(a@r>+ﬁr2892 J
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PML formulation (cont)
B -

Now, the PML solution 4 in 2, = B,\D is defined as the solution of the
system

V. (AVa)+aBk*t = 0 inQ

P
ou
= — r
0n g onlt p,
u = 0 only,.

o |
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PML formulation (cont)

o N

Now, the PML solution 4 in 2, = B,\D is defined as the solution of the
system

V- (AVa) +afk*t = 0 inQ,,

94
8—:}1 = —g onlp,
u = 0 only,.

Again, we introduce the sesquilinear form a : H'(Qgr) x H(Qr) — C by

i, 1) = /Q (AVe -V — Kafed)dr — (T, d)r,.

and
&(ﬁ’:w) — <97¢>FD \V/w S Hl(QR)

o |
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PML formulation (cont)

N N

Similar to the previous problem, we can reformulate the problem in the
bounded domain Q2 by imposing the boundary condition

Ot .
=g
on u,

'r

where T : H/2(I'p) — H~Y/2(I') is defined as follows: given

f ~ HI/Q(FR),
. oC
Tf = n

p?

where ¢ € H1(QPML) satisfies

V- (AV() +aBk?’¢C = 0 inQ"ME
C — f on FR?
L ¢ = 0 onIy,. J

An adaptive PML techniague for time-harmonic scatterina nroblems — p. 21/51



The PML equation In the layer
- -

Lets look now at the Dirichlet problem in the PML layer QMY only: The
solution w solves

V- (AVwW) +aBk*w = 0 inQ"ME
w = 0 onlgpg,
w = ¢q onl,.

where ¢ € H/2(T)).
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The PML equation In the layer
- -

Lets look now at the Dirichlet problem in the PML layer QMY only: The
solution w solves

V- (AVwW) +aBk*w = 0 inQ"ME
w = 0 onlgpg,
w = ¢q onl,.

where g € H'/2(T',). With b : HY(QPMY) x H1(QPME) — C defined to be

. [P [T Bropdy  a Op Oy e
b(%w)_/R/o (oz or 8r+6r 00 89_&ﬁk TWb) ardp,

we can write down the weak formulation for this problem:
given g € HY2(T',), find w € H'(QPML) such that w = 0 on Tz, w = g on

I',, and
| ;

(w,) =0 Ve Hy(Q"M). .
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Medium property
| -

We make the following assumption for the fictitious medium property o

(H1): 0 = 09 (;:g) for some oy > 0 and m € N.

o |
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Medium property
| -

We make the following assumption for the fictitious medium property o

(H1): 0 = 09 (; g) for some oy > 0 and m € N.

We know that 3(r) = »~! [ a(t)dt, and therefore 3(r) = 1 +i5(r), where

1 /[ - ~R\™
6(7“)2;/ o(t)it = 70" R(T_l;) |
R m+1 7 p

Therefore, 6 < o Vr > R.

o |
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Medium property
| -

We make the following assumption for the fictitious medium property o

(H1): 0 = 09 (; g) for some oy > 0 and m € N.

We know that 3(r) = »~! [ a(t)dt, and therefore 3(r) = 1 +i5(r), where

1 " 00 ’I”—R T—R m
7 = — t)dt = :
o(r) /RJ() m+1 r (p—R)

Therefore, 6 < o Vr > R.

(H2) There exists a unique solution to the Dirichlet PML problem in the
PML layer QFML,

o |
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Theorem 1

- N

We give the following theorem (without proof) as the main objective of this
subsection:

Theorem 1
Let (H1)-(H2) be satisfied. There exists a constant C' > 0 independent of
k, R, p, and oy such that the following estimates hold:

lo] "' Vwllzzoeuny < CCTH 1+ kR)|aolllgll gz e,
(9_w
on

where ag = 1 + ioy.

< CC’_l(l+kR)2|ao\2HqHH1/2(Fp).

H_1/2(FR)

o |
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Theorem 1

- N

We give the following theorem (without proof) as the main objective of this
subsection:

Theorem 1
Let (H1)-(H2) be satisfied. There exists a constant C' > 0 independent of
k, R, p, and oy such that the following estimates hold:

lo] "' Vwllzzoeuny < CCTH 1+ kR)|aolllgll gz e,
0_w
on

where ag = 1 + ioy.

< 00—1(1+kR)2|ao\2y|q|\H1/2<Fp).

H_1/2(FR)

We will need these estimates later to prove the main theorem of this talk

- B
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Propagation operator

o N

To prove the convergence of the just considered PML problem to the
original scattering problem, we need to introduce the propagation operator
P: HY*(Tg) — HY?(T',) defined as (Lassas and Somersalo):

1 27

HY (kp) 5 : .
P(f) — fnemea f'n = I fe_mgdg-
%fl?&l)(k}z) 21 Jo

o |
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Propagation operator

o N

To prove the convergence of the just considered PML problem to the
original scattering problem, we need to introduce the propagation operator
P: HY*(Tg) — HY?(T',) defined as (Lassas and Somersalo):

R 1 27

HY (kp) 5 .
P(f) — fnemea f'n = I fe_medg-
%Hg)(k}%) 21 Jo

One can also show that

—kS(p)/1- £

1P vz, <e
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D2N mapping

-

Lemma 2:
Let (H1)-(H2) be satisfied. Then, we have

ITf =T sr-1/2(rpy < CCT (L4 kR aol?e

kS(p)y 1B

[RAIFFVERS Y



D2N mapping
fLemma 2: T

Let (H1)-(H2) be satisfied. Then, we have

kS(p)y 1B

IT T la-1/2(0m < OO 1+ kR agl?e | Fll523/20 )

Theorem 2:

Let again (H1)-(H2) be satisfied. Then, for sufficiently large oy > 0, the

PML problem has a unique solution @ € H'(2,). Moreover, we have the
following estimate:

A —k
lu—al| oy < CCH1+ kR)?|ag|’e o)
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Third Part
| -

FINITE ELEMENTS AND
THE MAIN THEOREM
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The Finite Element Method (FEM)
- -

Task: By discretization, transform a variational boundary value problem to
a system of finite number of equations for real unknowns. l.e. transform
the linear variational problem

ueV:alu,v)=flv) YveV

to
uy € Vi, raluny,vy) = f(oy) Yoy € Vp.

o |
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The Finite Element Method (FEM)
- -

Task: By discretization, transform a variational boundary value problem to
a system of finite number of equations for real unknowns. l.e. transform
the linear variational problem

ueV:alu,v)=flv) YveV

to
uy € Vi, raluny,vy) = f(oy) Yoy € Vp.

Do it by triangulation of space (2.

o ' |
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FEM basis functions

- N

Basis functions ¢4, ..., ¢y for a finite element space V}, built on a mesh
M, satisfy:

® each ¢; associated with a single cell/edge/face/vertex of M,

® supp(¢;) = U{K : K € My,p C K}, if ¢, associated with
cell/edge/face/vertex p.

o |

An adaptive PML techniague for time-harmonic scatterina nroblems — p. 29/51



FEM basis functions

-

Basis functions ¢4, ..., ¢y for a finite element space V}, built on a mesh

M, satisfy:

® ceach ¢; associated with a single cell/edge/face/vertex of M,

® supp(¢;) = U{K : K € My,p C K}, if ¢, associated with
cell/edge/face/vertex p.

= -—-._HH T g A )
%-____7/ T 5 ol y
o, A‘\ - \
z/ \'\. 4 \\'\.
| /// \"\ ' \ ..\ \
| \\ | /,» \\\ \ < - \
| /’ Y 3
’ \ \ ! \
| \. = ' L 4 i z
e ST — e LY ——_______l Y
// b - g \ 57
Y
e

|
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FEM nodal basis
L -

Let V},(M},) = N}, := set of nodes of M,,.
Then, the nodal basis is defined as: If N}, = {a1,...,ax}, nodal basis

b, = {gbl, ceey qu} defined by gbi(aj) — 5@]

o |
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FEM nodal basis
L -

Let V},(M},) = N}, := set of nodes of M,,.
Then, the nodal basis is defined as: If N}, = {a1,...,ax}, nodal basis

b, = {gbl, ceey qu} defined by gbi(aj) — 5@]
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Finite element approximation

o N

Now, we introduce the finite element approximation of the PML problem.
From now on, we assume g € L*('p). Letb: H'(Q,) x H'(Q,) — C be
the sesquilinear form given by

b(ip, 1) — /Q (V- Vi — aBko)da.

Ie

o |
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Finite element approximation

o N

Now, we introduce the finite element approximation of the PML problem.
From now on, we assume g € L*('p). Letb: H'(Q,) x H'(Q,) — C be
the sesquilinear form given by

b(ip, 1) — /Q (V- Vi — aBko)da.

Ie

Furthermore, denote by H (€2,) = {v € H'(Q,) : v=00nT,}. Then, we
can write down the weak formulation for the PML problem: given
g € L*(T'p), find @ € Hy, (2,) such that

i) = [ gbds Vi€ Hp(@,)

o |
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Finite element notation

o N

® let FQ, which consists of piecewise segments whose vertices lie on
I',, be an approximation of I',.

o |
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Finite element notation

o N

® let FQ, which consists of piecewise segments whose vertices lie on
I',, be an approximation of I',.

® Let M, be aregular triangulation of the domain Q’pl.

o |
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Finite element notation

-

Let FQ, which consists of piecewise segments whose vertices lie on
I',, be an approximation of I',.

Let M, be a regular triangulation of the domain Q’pl.

Assume the elements K € M) may have one curved edge align with
I'p, such that Q’p‘ = Ukenm, K.

|
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Finite element notation

-

Let FQ, which consists of piecewise segments whose vertices lie on
I',, be an approximation of I',.

Let M, be a regular triangulation of the domain Q’pl.

Assume the elements K € M) may have one curved edge align with
I'p, such that Q’p‘ = Ukenm, K.

Let V;, ¢ H'(Q") be the conforming linear finite element space over
QZ, and V,? = {vp €V :vp =0o0n FZ}.

|
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Finite elements

o N

Now, we can formulate the finite element approximation to the variational
PML problem: find u; € V,? such that

b(uun, ) = /F ginds Vi € V.

and the discrete inf-sup condition

b(pn; PYn . .
sup L ) > pllenllai,)  Ven € Vi), i > 0.
02vnevo || UnllH1(a,)

o |
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Finite elements

o N

Now, we can formulate the finite element approximation to the variational
PML problem: find u; € V,? such that

b(uun, ) = /F ginds Vi € V.

and the discrete inf-sup condition

b ¢h7¢h A A
sup L ) > pllenllai,)  Ven € Vi), i > 0.
02vnevo || UnllH1(a,)

Since we are interested in a posterior error estimates and the associated
adaptive algorithm, we simply assume that the discrete problem has a
unique solution uy, € V,.

o |
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Finite elements, definitions

® Forany K € My, denote by hg its diameter.
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Finite elements, definitions

® Forany K € My, denote by hg its diameter.

® | et B;, denote the set of all sides that do not lie on I', and F’p‘.
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Finite elements, definitions

® Forany K € My, denote by hg its diameter.
® | et B;, denote the set of all sides that do not lie on I', and F’p‘.

® Foranye € By, h, stands for its length.
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© o o @

Finite elements, definitions

For any K € M}, denote by h its diameter.
Let B;, denote the set of all sides that do not lie on I', and F’p‘.
For any e € B;,, h. stands for its length.

For any K € My, introduce the residual
Ry, .=V (AVU}L K) + aﬁkQuhh{.

|
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°

Finite elements, definitions

For any K € M}, denote by h its diameter.
Let B;, denote the set of all sides that do not lie on I'p and F’p‘.
For any e € B;,, h. stands for its length.

For any K € My, introduce the residual
Ry, .=V (AVU}L K) + aﬁkQuh|K.

For any interior side e € B;,, which is the common side of K; and

Ky € M;, define the jump residual across e:

Je == (AVup| g, — AVuy|k,) - ve, Wwhere the unit normal vector v, to e
points from K5 to K.

|
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Finite elements, definitions

For any K € M}, denote by h its diameter.
Let B;, denote the set of all sides that do not lie on I'p and F’p‘.
For any e € B;,, h. stands for its length.

For any K € My, introduce the residual
Ry, .=V (AVuh K) + aﬁkQuh|K.

For any interior side e € B;,, which is the common side of K; and

Ky € M;, define the jump residual across e:

Je == (AVup| g, — AVuy|k,) - ve, Wwhere the unit normal vector v, to e
points from K5 to K.

If e =1p NOK for some element K € M, then we define the jump
residual to be: J. := 2(Vuy|x - n+ g).

|
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Finite elements, definitions (cont)

® Forany K € M, denote by ng the local error estimator which is
defined by

1/2
1
Nk = maxw(z) - <|hKRh|%2(K) += > h6|J€|%2(e)> :
reK 2
eCOK
where K is the union of all elements having nonempty intersection
with K, and

( _
1 ifr € Qp,

w(x) = | ~ 2
—kS(7), [1— =
\ lapale >0 it € QPME,

o |
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Main Theorem

o N

Theorem 3:
There exists a constant C' depending only on the minimum angle of the
mesh M, such that the following a posterior error estimate is valid:

1/2
lu —unllmiap < CélvA(kR)(1+kR)< > 77%)

KeM,y

. —kS(p)[1- L%
+ CC7'(1+kR)?|ap|%e P unll e gy

(1)r
where A(kR) = max | 1, lHO(l) KR,
[Hy ' (ER)|

o |
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Main Theorem

o N

Theorem 3:
There exists a constant C' depending only on the minimum angle of the
mesh M, such that the following a posterior error estimate is valid:

1/2
lu —unllmiap < CélvA(/ﬂR)(1+kR)< > 77%)

KeM,y

. —kS(p)[1- L%
+ CC7'(1+kR)?|ap|%e P unll e gy

(1)r
where A(kR) = max | 1, lHO(l) KR,
[Hy ' (ER)|

— k() [1— 22

The important exponentially decaying factor e 7 in the PML
region QML allows us to take thicker PML layers without introducing
Lunnecessary fine meshes away from the fixed domain Q2. J
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Symmetry in T
B o

For any o € H'(Qg), let ¢ be its extension in Q™ML such that

V- (AVQ) +aBk’p = 0 inQ"M
@ — ¢ on FR?
¢ = 0 onl,.

o |
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Symmetry in T
B o

For any o € H'(Qg), let ¢ be its extension in Q™ML such that

V- (AVQ) +aBk’p = 0 inQ"M
@ — ¢ on FR?
¢ = 0 onl,.

Lemma 3:
Let (H2) be satisfied. For any ¢, ¢ H'(QPML), we have

A —

<T907 w>FR — <T¢7 @>FR-

o |
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Symmetry in T
B o

For any o € H'(Qg), let ¢ be its extension in Q™ML such that

V- (AVQ) +aBk’p = 0 inQ"M
@ — ¢ on FR?
¢ = 0 onl,.

Lemma 3:
Let (H2) be satisfied. For any ¢, ¢ H'(QPML), we have

A —

<T907 w>FR — <T¢7 @>FR-

Whenever no confusion of the notation incurred, we shall write in the
following ¢ as ¢ in QML
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Error representation formula

o N

Lemma 4:
For any ¢ € H'(Qg), which is extended to be a function in H'(2,), and
wn € V), we have

0 — un, ) = / 9F=n) — b(un, o — on) + (Tun — Tup, @),
I'p

o |
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Error representation formula

o N

Lemma 4:
For any ¢ € H'(Qg), which is extended to be a function in H'(2,), and
on € VY, we have

0 — un, ) = / 9F=n) — b(un, o — on) + (Tun — Tup, @),
I'p

Lets now prove this important Lemma!

o |
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Interpolation Operator

o N

Since we are going to interpolate nonsmooth functions satisfying
boundary conditions, we resort to an interpolation operator

Iy, : Hiy) (Q25) — V) of Scott-Zhang.

Notation:

® Let NV}, = {a;}, be the set of all nodes of M.

o |
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Interpolation Operator
- -

Since we are going to interpolate nonsmooth functions satisfying
boundary conditions, we resort to an interpolation operator
Iy, : Hiy) (Q25) — V) of Scott-Zhang.

Notation:
® Let NV}, = {a;}, be the set of all nodes of M.

® Let {¢;}Y, be the corresponding nodal basis of V},.

o |
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Interpolation Operator
- -

Since we are going to interpolate nonsmooth functions satisfying
boundary conditions, we resort to an interpolation operator
Iy, : Hiy) (Q25) — V) of Scott-Zhang.

Notation:
® Let NV}, = {a;}, be the set of all nodes of M.
® Let {¢;}Y, be the corresponding nodal basis of V},.

® For any node a; which is interior to Q’; or on the boundary I'z, we take
o; = e, any side in 5, having a; as one of its vertex.

o |
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Interpolation Operator

o N

Since we are going to interpolate nonsmooth functions satisfying
boundary conditions, we resort to an interpolation operator

Iy, : Hiy) (Q25) — V) of Scott-Zhang.

Notation:

® Let NV}, = {a;}, be the set of all nodes of M.

® Let {¢;}Y, be the corresponding nodal basis of V},.

® For any node a; which is interior to Q’; or on the boundary I'z, we take
o; = e, any side in 5, having a; as one of its vertex.

® For any node a; which is on the boundary I'”?, we take o; as any side
on I'’ with one vertex a;.

o |
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Interpolation Operator (cont)

-

® leta;; = a4 and {ai,j}?:l the set of nodal points in o; with nodal
basis {¢i,j}?:1'



Interpolation Operator (cont)

-

® leta;; = a4 and {ai,j}?:l the set of nodal points in o; with nodal
basis {gbi,j}?:l-

® Let {y;;};_, bethe L*(0;) dual basis:

/ Vi ()i p(x)dr =68, J,k=1,2.

|
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Interpolation Operator (cont)

- N

We now define the interpolation operator II,, : H'(Q}) — V, to be

o(z) = 3 6i() / i)l

One can show the following properties of I1j:
® MvelVlifve H(lo)(ﬂg).

® v —1IhvllL2k) < Ch|| Vol 125y,

® v -T2 < Ch ||Vl L2(e).

K and ¢ denote the union of all elements in M, having non-empty
Intersection with K € M, and the side e, respectively.

o |
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Fourth Part
L -

IMPLEMENTATION AND
EXAMPLES
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Implementation

o N

We use the a posteriori error estimate in the main theorem to determine
the PML parameters. Just as before, we choose the PML medium

property to be a power function. So, only the thickness p — R of the layer
and the medium parameter o are left to be specified.

o |
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Implementation

o N

We use the a posteriori error estimate in the main theorem to determine
the PML parameters. Just as before, we choose the PML medium

property to be a power function. So, only the thickness p — R of the layer
and the medium parameter o are left to be specified.

First, we choose the exponentially decaying factor to be small such that it
becomes negligible compared with the finite element discretization errors.

Now, we set up an algorithm to adapt mesh size according to the a
posteriori error estimate.

o |
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Algorithm
- -

Let TOL > 0 be the tolerance for the error. Set m = 2. Now, the strategy
IS:

® Choose p and gy such that the exponentially decaying factor
O <1078;

o |
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Algorithm
- -

Let TOL > 0 be the tolerance for the error. Set m = 2. Now, the strategy
IS:

® Choose p and gy such that the exponentially decaying factor
O <1078;

® Set the computational domain 2, = B,\I'p and generate an initial
mesh M, over €,;

o |
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Algorithm
- -

Let TOL > 0 be the tolerance for the error. Set m = 2. Now, the strategy
IS:

® Choose p and gy such that the exponentially decaying factor
o <1078;

® Set the computational domain Q, = B,\I'p and generate an initial
mesh M, over €,;

® \While ERR > TOL do

s refine the mesh M,,: if ng > max;_,, 7y, refine the element
K e My;

» solve the discrete problem (3.3) on My,;

o compute error estimators on Mpy;

o |
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Algorithm
- -

Let TOL > 0 be the tolerance for the error. Set m = 2. Now, the strategy
IS:

® Choose p and gy such that the exponentially decaying factor
o <1078;

® Set the computational domain Q, = B,\I'p and generate an initial
mesh M, over €,;

® \While ERR > TOL do

s refine the mesh M,,: if ng > max;_,, 7y, refine the element
K e My;

» solve the discrete problem (3.3) on My,;

o compute error estimators on Mpy;

L’ End While. J

An adaptive PML techniague for time-harmonic scatterina nroblems — p. 44/51



Example 1: Unit circle

- N

Let the scatterer D be the unit circle. Let the exact solution be
U = H(()l)(kr), where r = |z|. Take R =2,and k = 1. (p = 4R and oy = 10)

10' T T _0.225

T T T T
I+ pZR —— p-2R
—— p=2R == p-3R
—=— p=4R -0.23| —= p-4R |
p=BR 3 p=8R
— aline with slope -1/2
-0.235
10°
-0.241
+ b N
e . 5
2 = T £ -0.za5p
i W . 2N
-  — 2 =
T P I
ot i -0.25 j
1 &
10 =
-0.255
j‘
1
02k g
1 o,
Lo g, e _ 5
1 T = e ——— T ——
o2esfR © -
", -
R
10_2 2z ! 3 ‘ e 5 3
10 10 10 il 0.37 | L 1 I I L 1
Number of nadal points ] ] 2 3 4 5 B 7 8
Number of nodal points %10
Fi¢. 5.2. Quasi-optimality of the adaptive mesh refinements of the emvor || V{w — un (|L2(n,)
for Example 1. Fia. 5.3. The real part of the far fields when the observing angle € = w/4 for Ezample 1.

o |
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Example 1: Unit circle (cont

| N

‘ Fic. 5.4. The mesh of 6668 nodes after 10 adaptive iterations when p = 4R for Example 1. \
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Example 2
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Fia. 5.1. The geometry of the scatter

|
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Example 2 (cont)

A Posterior Emor Indicator
=
T

0.5
— p=2R
p=3R
p=dR 0.4f
—— aline with slope -1/2
03f
ooz
] oar

The far-fiekd patiem u

Number of nadal points.

FiG. 5.5
for Ezample 2.

The far-fiekd pattem u

Quasi-optimality of the adaptive mesh refinements of the a posteriori error estimator

08

04F

0z

FIG. 5.7. The real part of the far fields in the reflective direction for Ezample 2.

2 3 4 5 ]
Number of nodal peints

Fic. 5.6. The real part of the far fields in the incident direction for Ezample 2.

3
Number of nodal peints
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Example 2

Fic. 5.8, The mesh of T048 nodes after 153 adaptive iterations when p = 3R for Example 2.
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Example 2

0.5

-0.5

Fiz, 5.9, The contour plot of the real part of the solution when p = 3R for Erample 2 \
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The End

Remarks / Questions
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