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Maxwell System 

 Maxwell system describes solution to two divergence
and two curl equations of electric (E) and magnetic (H) 
field. 

∇ X H −  ∂ E
∂ t

−  E = J

∇ X E   ∂ H
∂ t

= K

 In general for time domain analysis we concentrate on 
two maxwell curl equations  describing space – time 
variation of these fields. 

  

FVTD Method
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Maxwell System (continued...) 

 For our analysis we consider only homogeneous      
form of Maxwell curl equations                              .

  

 = 0
J = 0
K = 0

FVTD Method

∇ X H −  ∂ E
∂ t

= 0

∇ X E   ∂ H
∂ t

= 0
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Maxwell System (continued...) 

FVTD Method

 Field quantities E and H are       vector-valued functions 
on space – time plane.

ℝ3

 Spatial domain is                 (possibly unbounded.) ⊂ ℝ3

 We consider finite time interval                          .=0,T  ⊂ ℝ

 Constitutive parameters: ε and μ are assumed to constant 
all over the domain.
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Initial – Boundary Value problem 

FVTD Method

t ∈ 
  The initial – boundary value problem we are interested 
in here is to find the functions E and H for            given 
that                                                                              . lim t 0

E  x , t  = lim t 0
H  x , t  = 0 ∀ x ∈ 

Maxwell system

Initial – boundary 
Conditions
(perfect metallic,
perfect magnetic,
PML etc)

+
Initial – boundary
value problem

 Above problem can be solved on computer taking into 
consideration of limited memory and time for processing.
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Introduction to FVTD Method 

 FVTD stands for Finite Volume Time Domain

FVTD Method

 Conceived from Computational Fluid Dynamics (CFD), 
FVTD works on conservation laws for any hyperbolic 
system.

 Basic idea is conservation of field quantities.



8

FVTD Method Berenger's PML Implementation Conclusion

Finite Volume – Conservation Principle 

FVTD Method

 The time rate of change of the total field inside the 
section [a,b] changes only due to the flux of fields into 
and out of the pipe at the ends x=a and x=b.

i

x=a x=b

Flux of field into
the cell [a,b]

Flux of field out of
the cell [a,b]
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Maxwell system in Conservative Form

FVTD Method

Q = Q1,Q2,Q3
T =

 H x , H y , E z
T TM case

−E x ,−E y , H z
T TE case

F 0Q  =  0,−Q3,−Q2
T

G0Q  =  Q3, 0, Q1
T

Q t  F 0Q x  G0Q y = 0

For our analysis we use only TM case

F 0Q  =  0,−E z ,−H y
T

G0Q  =  E z , 0, H x
T
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Finite Volumes in 3D

FVTD Method

Face 1

Face 2 Face 3

Face 4

Bary-centre (BC)

Face-centre (FC)

Node
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Finite Volumes in 2D

FVTD Method

Bary-centre (BC)

Face-centre (FC)

Node
Neighbour 1

Neighbour 2

Neighbour 3
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Edge Fluxes

FVTD Method

Outgoing flux

Incoming flux

Godunov 1st Order

q
i

q
i+1q

L

q
R

q
L

q
R

q
i

q
i+1

MUSCL 2nd Order
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Flux approximation

FVTD Method

Piecewise constant
flux approximation

Piecewise linear
flux approximation
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Berenger PML

Berenger's PML

 The method used in Berenger PML to absorb outgoing 
waves consists of limiting computational domain with an 
artificial boundary layer  specially designed to absorb 
reflectionless the electromagnetic waves.

Γ
∞

Object
Γ

b

Free space PML

Ω
1

Ω
2

Ω
3

Ω
4

Ω
5

Ω
6

Ω
7

Ω
8

Incident wave Scattered wave
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Berenger PML

Berenger's PML

 The computational domain is divided into two parts.

Free space or vacuum – classical Maxwell equations.

Absorbing Layer – modified Maxwell equations.

Modified Maxwell equation

 ∂ H
∂ t

 ∇ X E  H
H = 0

 ∂ E
∂ t

− ∇ X H  E
E = 0

 σ
H 

and σ
E
 are magnetic and electric conductivities 

respectively.
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Modified Maxwell system

Berenger's PML

 Modified Maxwell system can be considered as 
classical Maxwell system with source terms. To analyse 
the modified eqns at continuous levels leads to the 
condition: σ

H 
= σ

E 
= σ .

Modified Maxwell equation

 ∂ H
∂ t

 ∇ X E   H = 0

 ∂ E
∂ t

− ∇ X H   E = 0

σ
H 

= σ
E 

= σ enables reflectionless transmission of a plane wave propagating 

normally across the interface between free space and outer boundary.

In FVTD formulation
these terms are 
considered as
source terms
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Berenger's PML

Berenger's PML

 We model this PML in 2D set-up . We make use of 2D 
Maxwell equations with TM formulation. Generalising to 
3D full wave analysis is straightforward.

 J. P. Berenger published (J. Comp. Physics No. 114 – 
year 1994) this novel technique called PML in 2D case. 

 With this new formulation, the theoretical reflection 
factor of a plane wave striking a vacuum – layer interface 
is zero at any incidence angle and at any frequency.
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Berenger split field formulation

Berenger's PML


∂ H x

∂ t


∂E zx  E zy
∂ y

  y H x = 0


∂ H y

∂ t
−

∂E zx  E zy
∂ x

  x H y = 0


∂ E zx

∂ t
−

∂ H y

∂ x
  x E zx = 0


∂ E zy

∂ t


∂ H x

∂ y
  y E zy = 0

 We split E
z 
field into two subparts: E

zx 
and E

zy
. Hence we have 

four equations in modified Maxwell equations.
 
 

 Magnetic and electric conductivities are also split into σ
Hx

, σ
Hy

, 

σ
Ex 

and σ
Ey 

with conditions σ
Hx

= σ
Ex

= σ
x 
and σ

Hy
= σ

Ey
= σ

y 
.
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σ
x
and σ

y 
 – Physical  Interpretation   

Berenger's PML

 Choice of σ
x
and σ

y 
is very critical to obtain perfectly transparent 

vacuum - layer interfaces for outgoing waves. 
 
 

 σ
x 
can be interpreted as absorption coefficient along x-direction. 

Correspondingly σ
y 
is along y-direction.

If e x is the normal direction for the interface between
free space−PMLmediumthen

 = 0 ∀ i and ∀  if  y = 0
 = reflectioncoefficient i = incidence angle

 = wave frequency

Similarly if e y is the normal direction for the interface between
free space−PMLmediumthen

 = 0 ∀ i and ∀  if  x = 0
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Conductivity choices

Berenger's PML

 Computational domain is bounded in all sides by artificial absorbing 
layers namely Ω

1
 to Ω

8 
.

 = 1∪...∪8 where
1 =  x , y  ; y ∈ [−b ,b ] , x ∈ [ a , A]
2 =  x , y  ; y ∈ [ b , B ] , x ∈ [ a , A]
3 =  x , y  ; y ∈ [ b , B ] , x ∈ [−a , a]

 Also to avoid parasitic reflections on the interface of the free 
space and PML medium, we take σ

y
= 0 in Ω

1
and σ

x
= 0 in Ω

3 
etc.

Γ
∞

Object
Γ

b

Free space PML

Ω
1

Ω
2

Ω
3

Ω
4

Ω
5

Ω
6

Ω
7

Ω
8

Incident wave Scattered wave
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Conductivity choices (continued...)

Berenger's PML

 Based on the discussions before we can more precisely define 
conductivity choices in different portions of artificial boundary. 

 =  x e x   y e y

1 = 0  x−a
A−a 

n

e x

3 = 0  y−b
B−b 

n

e y

 = 1 in 1

 = 3 in 3

 = 1  3 in 2

 Choice of σ
0 
and n play a vital role in formulating reflectionless 

boundary condition. Different possibilities are disscussed here.
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Conductivity choices (continued...)

Berenger's PML

 One another possible choice of σ
0
 can be done as presented paper 

of F. Collino, P.B. Monk (Comput. Methods Appl. Mech. Engrg. 
No. 164 year 1998 pg 157 – 171.)

 =
2c


layer length = 1wavelength

  x = 0  x−a
 

2

e x , ∀ x  a  parabolic−law

  y  = 0  y−a
 

2

e y , ∀ y  b

0 = 3
2

loge  R0
−1  R0 = 10−2 , 10−3 , 10−4
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Implementation issues

 A few implementation issues concerning PML formulation are to 
 be discussed in depth before actual coding procedure.

Implementation

Flux calculation in PML layer leads to solving a non-
hyperbolic equation – New formulation of Maxwell eqns.

PMC – Perfect Magnetic Conducting boundary condition        
ABC – Absorbing Boundary Condition

Issues on hyperbolicity
of new formulation

Termination of PML
using PMC or ABC
boundary condition
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Loss of hyperbolicity of the system

 The modified Maxwell equations are not purely hyperbolic.

Implementation


∂ H x

∂ t


∂E zx  E zy
∂ y

  y H x = 0


∂ H y

∂ t
−

∂E zx  E zy
∂ x

  x H y = 0


∂ E zx

∂ t
−

∂ H y

∂ x
  x E zx = 0


∂ E zy

∂ t


∂ H x

∂ y
  y E zy = 0

 The splitting of E
z 

field into E
zx

 and E
zy

fields spoils the 

hyperbolic nature of the system and hence we need to manipulate  
the above equations to solve them numerically .
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Implementation issues

 For numerical simplicity, we can choose to conserve the field 
components in vacuum (H

x 
, H

y
, E

z
.) Hence if we can change E

zx 

by E
z 

- E
zy  

we can formulate a set of four modified Maxwell 

equations which are more easier to handle and analyse.

Implementation


∂ H x

∂ t


∂ E z

∂ y
  y H x = 0


∂ H y

∂ t
−

∂ E z

∂ x
  x H y = 0


∂ E z

∂ t


∂ H x

∂ y
−

∂ H y

∂ x
  x E z   y −  xE zy = 0


∂ E zy

∂ t


∂ H x

∂ y
  y E zy = 0 Still this is an

non-hyperbolic
Eqn.

Classical
Maxwell 
Eqns with
source
terms
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PML – Is it well-posed???

 The Jacobian matrix A contains valuable information regarding 
the flux function and could be used to study eigenvalues and eigen 
-vectors of the system. The previous set of modified Maxwell eqns 
can be written in condensed form.

Implementation

Q t  ∇ F Q ∑ Q =0 where F Q =F Q  ,G Q T

Jacobian A = An = n F ' Q  = n1
∂ F
∂Q

Q   n2
∂G
∂Q

Q 

 Jacobian A has three real eigenvalues – with a double mulplicity 
of zero (Jordan block of dimension 2.)  This makes the resulting 
system non - hyperbolic.



27

FVTD Method Berenger's PML Implementation Conclusion

PML – Is it well-posed??? (continued...)

Implementation

 But it has been proved by de la Bourdonnaye that if we add the 
divergence and an additional compatibility conditions the resulting 
system has the property of well-posedness as a hyperbolic system.

Compatibility Eqn:  E zy = ∂2

∂ y2 E z

 It is also worth to note that this equation is redundant for initial 
data verifying these constraints because                                        .∂t  E zy = ∂t ∂2 /∂ y2 E z 

 Hence the PML formulation is well – posed !!!.

 We also impose at t = 0, in the PML E
z 
= E

zy
 = 0 .
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PML flux approximation

Implementation

 First three equations (out of four) : classical Maxwell system 
with source terms.

 Our attention is to approximate the flux φ for the fourth equation. 

 φ is totally determined by our knowledge of H
x' 

.

 We can solve for H
x' 

by solving a Riemann problem at the 

interface between two neighbour cells.

Q t  F Q xG Q y = 0  Bidimensional Riemann problem!

Q  x , y ,0 = {
H x i  if n1 x  n2 y  n1 x '  n2 y '

H x  j  if n1 x  n2 y  n1 x '  n2 y '
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PML flux approximation (continued...)

Implementation

 For FVTD in a triangular mesh this is determined based on some 
thumb-rules .

n

 x ' , y ' 

i

j

X

Y

Free space – PML
Interface

Q t  F Q x = 0  Monodimensional Riemann problem!

Q  x ,0 = {
H x i  if X  0
H x  j  if X  0

 But the field H
x'  

is invariant along Y-direction. 

n  normal vector
 x ' , y '   edge centre coordinates

i  neighbour 1
j  neighbour2
X  X −direction
Y  Y −direction
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PML flux approximation (continued...)

Implementation

 Using the Rankine – Hugoniot jump relation, we can formulate the 
value of H

x
 and H

y
 in each neighbours of each interfaces.

 For TM case the PML flux function can be obtained with only the 
knowledge of H

x
 and E

z
 in each neighbours of each interfaces.

 pml = f H x i  , H x  j  , E z i  , E z  j  , n2

 pml = 1
2

H x i   H x  j n2 − 1
2

E z i   E z  j n2
2

Upwind flux Correction factor
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Treatment of outer boundary condtions

Implementation

 Different chooses for outer boundary conditions are possible to 
terminate the PML.

 PEC – Perfect Electric Conductor :                            n X E = 0

 PMC – Perfect Magnetic Conductor :                             n X H = 0

 SM-ABC – Silver – Mueller Absorbing Boundary Condition:

 0

0

n X E L  n X n X H L = 0

E
L   

H
L

n

Computational
Domain

Outer boundary
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Experiments Done !!!

Implementation

 A first – order  (in space and time discretisation) scheme was 
successfully tested for the presented work and numerical results are 
shown here.
 For the sake of fast and robust code validation a simplified PML setup 
was chosen for simulation. 

 Computational domain used: 

Source Edge

TM plane wave
source

PMC

PMC

PML - PMC

PML

Bulk

(0,0) (4,0) (6,0)
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Experiments Done !!! (continued...)

Implementation

 A few words on PML – PMC flux function is mandatory to complete 
the description of the simulation setup.

PML - PMC

 For a TM formulation the flux function for PML – PMC is given by:

∫
∂C i∩∞

F Q n d  =  n2 E zL

−n1 E zL

0
n2 H xL
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Remarks & Conclusions

 The presented FVTD based PML was successfully implemented and 
tested at different spatial discretisations. 

 The convergence of the result is clearly observed when reducing spatial 
and temporal discretisation. 

Conclusion

 Many minute details  regarding the PML were tried and some 
interesting conclusions regarding PML thickness were analysed. The 
choice of σ

0  
and n  were found to very critical for very good PML 

formulation.  

 Last but not least, it was a nice experience to model the basic finite 
difference model of Berenger's PML in FVTD unstructured formulation. 
This gave a deeper insight into the scheme and also about PML. 
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Conclusion
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Questions & Comments !!!

Conclusion

Questions ???
Comments !!!


